Gas-liquid discharge non-thermal plasma (NTP) coupled with an ozonation reactor was used to investigate the removal of a broad-spectrum antibacterial agent, chloroxylenol (PCMX), from aqueous solution. Under the same experimental conditions (discharge power of 50.25 W, the initial concentration of PCMX of 60 mg L, oxygen flow of 1.
View Article and Find Full Text PDFDuring space travel, radiation and microgravity are recognized to be major hazardous factors in the overall health and well-being of astronauts. Although some efforts have been made to elucidate the effects of short-term space travel on the reproductive health of astronauts and multiple other species in a variety of in vitro and in vivo studies, it is still unclear whether space travel can cause abnormal embryonic development or if it poses any reproductive risks. Recently, Lei et al.
View Article and Find Full Text PDFIonising radiation- (IR-) induced DNA double-strand breaks (DSBs) are considered to be the deleterious DNA lesions that pose a serious threat to genomic stability. The major DNA repair pathways, including classical nonhomologous end joining, homologous recombination, single-strand annealing, and alternative end joining, play critical roles in countering and eliciting IR-induced DSBs to ensure genome integrity. If the IR-induced DNA DSBs are not repaired correctly, the residual or incorrectly repaired DSBs can result in genomic instability that is associated with certain human diseases.
View Article and Find Full Text PDFStability of the intermediate frequency (IF) in the far-infrared polarimeter-interferometer diagnostic system is critically important for the long pulse discharge experiments on the EAST tokamak. In this note, a real-time remote/local IF stability control system is described. The measured plasma parameters, including the Faraday rotation angle, electron density, lower hybrid wave, and plasma current, are obtained with the aid of this newly developed IF stability control system.
View Article and Find Full Text PDFIn this paper, a real time method for an in situ measurement of the two-dimensional (2-D) temperature filed of thermal plasmas is developed with the combination of the visible image processing technique and the spectroscopic line-ratio method at two specified wavelengths. After the calibration of the gray scale values of the recorded images with the CCD cameras by the emission intensity received using a spectrometer, the 2-D temperature field of the plasma arc-jet can be obtained conveniently based on the derived gray scale values of the CCD images at two specified wavelengths and the formula similar to that of spectroscopic line-ratio method. The experimental results show that the obtained temperature fields of the plasma arc-jet at different times are qualitatively reasonable and consistent with the modeling result.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2014
Developing rapid and diverse microbial mutation tool is of importance to strain modification. In this review, a new mutagenesis method for microbial mutation breeding using the radio-frequency atmospheric-pressure glow discharge (RF APGD) plasma jets is summarized. Based on the experimental study, the helium RF APGD plasma jet has been found to be able to change the DNA sequences significantly, indicating that the RF APGD plasma jet would be a powerful tool for the microbial mutagenesis with its outstanding features, such as the low and controllable gas temperatures, abundant chemically reactive species, rapid mutation, high operation flexibility, etc.
View Article and Find Full Text PDFTo obtain oleaginous yeast mutants with improved lipid production and growth rates, an atmospheric and room temperature plasma (ARTP) jet was used with a 96-well plate for high throughput screening. Mutants with changes in growth rates and lipid contents were obtained. At a lethality rate of 99%, the positive mutation rate of the yeast cells was 27.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
August 2006
The states and the distributions of the plasma in the tokamak can be obtained by measuring the spectrum. Since there are many different objects to be measured, many different apparatuses are used to get a better result. Some methods for the measurement are listed in this article.
View Article and Find Full Text PDF