Publications by authors named "Chengying Xie"

Article Synopsis
  • SOS1 is a key guanine nucleotide exchange factor involved in RAS activation and is critical in leukemia development, but traditional inhibitors have had limited success in treating cancers related to KRAS and CML.
  • The study introduces a new compound, SIAIS562055, which effectively degrades SOS1 and inhibits the downstream ERK signaling pathway, showcasing stronger anti-cancer effects than existing small molecule inhibitors.
  • SIAIS562055 not only enhances the effectiveness of KRAS and BCR-ABL inhibitors but also shows promise in treating KRAS-mutant tumors and BCR-ABL+ chronic myeloid leukemia, suggesting that targeting SOS1 could be a valuable therapeutic strategy for these conditions.
View Article and Find Full Text PDF

Selective inhibition of the transcription elongation factor (P-TEFb) complex represents a promising approach in cancer therapy, yet CDK9 inhibitors (CDK9i) are currently limited primarily to certain hematological malignancies. Herein, while initial responses to CDK9-targeted therapies are observed in vitro across various KRAS-mutant cancer types, their efficacy is far from satisfactory in nude mouse xenograft models. Mechanistically, CDK9 inhibition leads to compensatory activation of ERK-MYC signaling, accompanied by the recovery of proto-oncogenes, upregulation of immediate early genes (IEGs), stimulation of the complement C1r-C3-C3a cascade, and induction of tumor immunosuppression.

View Article and Find Full Text PDF

The transcriptional repressor B cell lymphoma 6 (BCL6) plays a critical role in driving tumorigenesis of diffuse large B-cell lymphoma (DLBCL). However, the therapeutic potential of inhibiting or degrading BCL6 for DLBCL has not been thoroughly understood. Herein, we reported the discovery of a series of novel BCL6-targeting PROTACs based on our previously reported N-phenyl-4-pyrimidinamine BCL6 inhibitors.

View Article and Find Full Text PDF

HER3 (human epidermal growth factor receptor 3) acts through heterodimerization with EGFR (epidermal growth factor receptor) or HER2 to play an essential role in activating phosphoinositide 3-kinase (PI3K) and AKT signaling-a crucial pathway that promotes tumor cell survival. HER3 is a promising target for cancer therapy, and several HER3-directed antibodies have already entered into clinical trials. In this study we characterized a novel anti-HER3 monoclonal antibody, SIBP-03.

View Article and Find Full Text PDF

Background: KRAS inhibitors (KRASi) AMG510 and MRTX849 have shown promising efficacy in clinical trials and been approved for the treatment of KRAS-mutant cancers. However, the emergence of therapy-related drug resistance limits their long-term potential. This study aimed to identify the critical mediators and develop overcoming strategies.

View Article and Find Full Text PDF

Betulinic acid (BA) is a natural pentacyclic triterpenoid that has a wide range of biological and pharmacological effects. Here, computational methods such as pharmacophore screening and reverse docking were used to predict the potential target for BA. Retinoic acid receptor-related orphan receptor gamma (RORγ) was confirmed as its target by several molecular assays as well as crystal complex structure determination.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) is an epigenetic antitumor drug target, but most existing HDAC inhibitors show limited antitumor activity and their use is often accompanied by serious adverse effects. To overcome these problems, we designed and synthesized a series of triazole-containing compounds as novel HDAC inhibitors. Among them, compound exhibited potent and selective inhibition of HDAC1, with good antiproliferative activity in vitro and an excellent pharmacokinetic profile.

View Article and Find Full Text PDF

The KRAS mutant has emerged as an important therapeutic target in recent years. Covalent inhibitors have shown promising antitumor activity against KRAS-mutant cancers in the clinic. In this study, a structure-based and focused chemical library analysis was performed, which led to the identification of 143D as a novel, highly potent and selective KRAS inhibitor.

View Article and Find Full Text PDF

Inhibitors targeting the antiapoptotic molecule BCL-2 have therapeutic potential for the treatment of acute myeloid leukaemia (AML); however, BCL-2 inhibitors such as venetoclax exhibit limited monotherapy efficacy in relapsed or refractory human AML. PI3Kδ/AKT signalling has been shown to be constitutively active in AML patients. Here, we demonstrate that the combination of BCL-2 and PI3Kδ inhibitors exerts synergistic antitumour effects both and in AML.

View Article and Find Full Text PDF

Based on its inhibition by antagonists, the A adenosine receptor (AAR) has attracted attention as an anti-tumor drug target; however, in preclinical models and clinical trials, AAR antagonists have so far shown only limited efficacy as standalone therapies. The design of dual-acting compounds, targeting the AAR and histone deacetylases (HDACs), is used here as an approach to the discovery of novel and more potent antitumor agents. Based on the core structures of the AAR antagonists V-2006 and CPI-444, novel 4-(furan-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-6-amine derivatives were designed as such dual-acting compounds.

View Article and Find Full Text PDF

Adenosine is an immunosuppressive factor in the tumor microenvironment mainly through activation of the A adenosine receptor (AR), which is a mechanism hijacked by tumors to escape immune surveillance. Small-molecule AR antagonists are being evaluated in clinical trials as immunotherapeutic agents, but their efficacy is limited as standalone therapies. To enhance the antitumor effects of AR antagonists, dual-acting compounds incorporating AR antagonism and histone deacetylase (HDAC) inhibitory actions were designed and synthesized, based on co-crystal structures of AR.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) is an established biomarker of cancer metastasis. The circulation dynamics of CTCs are important for understanding the mechanisms underlying tumor cell dissemination. Although studies have revealed that the circadian rhythm may disrupt the growth of tumors, it is generally unclear whether the circadian rhythm controls the release of CTCs.

View Article and Find Full Text PDF

A 17-membered macrocyclolipopeptide, named dysoxylactam A (1) comprising an unprecedented branched C19 fatty acid and an l-valine, was isolated from the plants of Dysoxylum hongkongense. The challenging relative configuration of 1 was established by means of residual dipolar coupling-based NMR analysis. The absolute configuration of 1 was determined by single-crystal X-ray diffraction on its p-bromobenzoate derivative (2).

View Article and Find Full Text PDF

Heat shock protein 90 (Hsp90) is a potential oncogenic target. However, Hsp90 inhibitors in clinical trial induce heat shock response, resulting in drug resistance and inefficiency. In this study, we designed and synthesized a series of novel triazine derivatives (-, -, -) as Hsp90 inhibitors.

View Article and Find Full Text PDF

Inhibition of the cyclin-dependent kinase (CDK) 4/6-retinoblastoma (RB) pathway is an effective therapeutic strategy against cancer. Here, we performed a preclinical investigation of the antitumor activity of SHR6390, a novel CDK4/6 inhibitor. SHR6390 exhibited potent antiproliferative activity against a wide range of human RB-positive tumor cells in vitro, and exclusively induced G arrest as well as cellular senescence, with a concomitant reduction in the levels of Ser780-phosphorylated RB protein.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase (PARP) enzymes play an important role in repairing DNA damage and maintaining genomic stability. Olaparib, the first-in-class PARP inhibitor, has shown remarkable clinical benefits in the treatment of BRCA-mutated ovarian or breast cancer. However, the undesirable hematological toxicity and pharmacokinetic properties of olaparib limit its clinical application.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) is a validated molecular target for patients harboring ALK rearrangement, which triggers the development of ALK inhibitors. However, the activation of mesenchymal-epithelial transition factor (c-Met) has emerged as a common cause of acquired resistance induced by selective ALK inhibitors. Herein, we report the first preclinical characterization of CT-711, a novel dual inhibitor of ALK and c-Met.

View Article and Find Full Text PDF

Nonpeptide thrombopoietin receptor (TPOR/MPL) agonists, such as eltrombopag, have been used to treat thrombocytopenia of various aetiologies. Here, we investigated the pharmacological properties of hetrombopag, a new orally active small-molecule TPOR agonist, in preclinical models. Hetrombopag specifically stimulated proliferation and/or differentiation of human TPOR-expressing cells, including 32D-MPL and human hematopoietic stem cells, with low nanomolar EC values through stimulation of STAT, PI3K and ERK signalling pathways.

View Article and Find Full Text PDF

Hsp90 regulates the stability of oncoproteins important in tumor development and progression, and represents a potential therapeutic target. However, all Hsp90 inhibitors currently in clinical trials target Hsp90 ATPase activity and exhibit low selectivity and high toxicity. In this study, we discovered a new Hsp90 inhibitor, DCZ3112, with a novel mechanism of action.

View Article and Find Full Text PDF

BRAF and MEK inhibitors have shown remarkable clinical efficacy in BRAF-mutant melanoma; however, most patients develop resistance, which limits the clinical benefit of these agents. In this study, we found that the human melanoma cell clones, A375-DR and A375-TR, with acquired resistance to BRAF inhibitor dabrafenib and MEK inhibitor trametinib, were cross resistant to other MAPK pathway inhibitors. In these resistant cells, phosphorylation of ribosomal protein S6 (rpS6) but not phosphorylation of ERK or p90 ribosomal S6 kinase (RSK) were unable to be inhibited by MAPK pathway inhibitors.

View Article and Find Full Text PDF

In order to achieve the automatic identification of liver cancer cells in the blood, the present study adopted a principal component analysis (PCA) and back propagation (BP) algorithm of feedforward neural networks to identify white blood cells and red blood cells in mice and human liver cancer cells, HepG2. The present paper shows the process in which PCA was carried out after obtaining spectral data by fiber confocal back-scattering spectrograph, selecting the first two principal components as spectral features, and establishing a neural network pattern recognition model with two input layer nodes, eleven hidden layer nodes and three output nodes. In order to verify whether the model would give accurate identification of cells, we chose 195 object data to train the model with 150 sets of data as training set and 45 sets as test set.

View Article and Find Full Text PDF

It remains controversial whether surgical castration prolongs survival rate and improves therapy prospects in patients suffering from prostate cancer. We used PC3 cell line to establish prostate tumor models. In vivo flow cytometry and ultrasonic imaging were used to monitor the process of prostate cancer growth, development and metastasis.

View Article and Find Full Text PDF
Article Synopsis
  • Anlotinib is a new oral medication that works as a tyrosine kinase inhibitor, and a study was conducted to understand how it's absorbed and processed in the body, involving tests on rats, mice, and dogs.
  • The drug showed good absorption and long half-life in dogs compared to rats, with differences in plasma clearance rates likely explaining this variation.
  • Anlotinib mainly undergoes metabolism via the cytochrome P450 system in humans, particularly through CYP3A4 and CYP2C9, indicating a low risk of significant drug interactions with these metabolic enzymes.
View Article and Find Full Text PDF

Abrogating tumor angiogenesis by inhibiting vascular endothelial growth factor receptor-2 (VEGFR2) has been established as a therapeutic strategy for treating cancer. However, because of their low selectivity, most small molecule inhibitors of VEGFR2 tyrosine kinase show unexpected adverse effects and limited anticancer efficacy. In the present study, we detailed the pharmacological properties of anlotinib, a highly potent and selective VEGFR2 inhibitor, in preclinical models.

View Article and Find Full Text PDF