Publications by authors named "Chengxin Xiao"

Excitons in two-dimensional (2D) semiconductors are particularly exciting, as reduced screening and dimensional confinement foster their pronounced many-body interactions. Optical pumping is typically used to create excitons so as to study their properties, but at the same time such pumping can also create unbound charge carriers. This makes experimental determination of the exciton-exciton interactions difficult.

View Article and Find Full Text PDF

Moiré superlattices of layered transition metal dichalcogenides are proven to host periodic electron crystals due to strong correlation effects. These electron crystals can also be intertwined with intricate magnetic phenomena. In this Letter, we present our findings on the moiré exchange effect, resulting from the modulation of local magnetic moments by electron crystals within well-aligned WSe_{2}/WS_{2} heterobilayers.

View Article and Find Full Text PDF

Placed in cavity resonators with three-dimensionally confined electromagnetic wave, the interaction between quasiparticles in solids can be induced by exchanging virtual cavity photons, which can have a nonlocal characteristic. Here, we investigate the possibility of utilizing this nonlocality to realize the remote control of the topological transition in mesoscopic moiré superlattices at full filling (one electron/hole per supercell) embedded in a split-ring terahertz electromagnetic resonator. We show that gate tuning one moiré superlattice can remotely drive a topological band inversion in another moiré superlattice not in contact but embedded in the same cavity.

View Article and Find Full Text PDF

Monolayer semiconducting transition metal dichalcogenides possess broken inversion symmetry and strong spin-orbit coupling, leading to a unique spin-valley locking effect. In 2H stacked pristine multilayers, spin-valley locking yields an electronic superlattice structure, where alternating layers correspond to barriers and quantum wells depending on the spin-valley indices. Here we show that the spin-valley locked superlattice hosts a kind of dipolar exciton with the electron and hole constituents separated in an every-other-layer configuration: that is, either in two even or two odd layers.

View Article and Find Full Text PDF

Stacking transition metal dichalcogenides (TMDs) to form moiré superlattices has provided exciting opportunities to explore many-body correlation phenomena of the moiré trapped carriers. TMD bilayers, on the other hand, host long-lived interlayer exciton (IX), an elementary excitation of long spin-valley lifetime that can be optically or electrically injected. Here we find that, through the Coulomb exchange between mobile IXs and carriers, the IX bath can mediate both Heisenberg and Dzyaloshinskii-Moriya type spin interactions between moiré trapped carriers, controllable by exciton density and exciton spin current, respectively.

View Article and Find Full Text PDF

Many-body interactions between carriers lie at the heart of correlated physics. The ability to tune such interactions would allow the possibility to access and control complex electronic phase diagrams. Recently, two-dimensional moiré superlattices have emerged as a promising platform for quantum engineering such phenomena.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: