A series of Mn and Fe metal oxide catalysts loaded onto USY, as well as single metal oxides, were prepared and characterized. The effects of interactions between the catalytic components and the introduction of gas phase NO on the catalytic ozonation of toluene were investigated. Characterization showed that there existed strong interactions between MnO, FeO, and USY, which enhanced the content of oxygen vacancies and acid sites of the catalysts and thus boosted the generation of reactive oxygen species and the adsorption of toluene.
View Article and Find Full Text PDFModulating oxygen vacancies of catalysts through crystal facet engineering is an innovative strategy for boosting the activity for ozonation of catalytic volatile organic compounds (VOCs). In this work, three kinds of facet-engineered monoclinic NiO catalysts were successfully prepared and utilized for catalytic toluene ozonation (CTO). Density functional theory calculations revealed that Ni vacancies were more likely to form preferentially than O vacancies on the (110), (100), and (111) facets of monoclinic NiO due to the stronger Ni-vacancy formation ability, further affecting O-vacancy formation.
View Article and Find Full Text PDFAlthough free hydroxyl radical (·OH) generated on OMS-2-based catalysts during the catalytic ozonation process have been shown as important reactive oxygen species (ROSs) for toluene degradation, improvement of surface ·OH formation ability remains challenging. Here, Na, K, Rb, and Cs-OMS-2-SO/ZSM-5 catalysts were prepared, characterized and evaluated for catalytic ozonation of toluene. Both characterizations and DFT calculations showed that the appropriate alkali metal introduction made the catalyst possess with appropriate crystalline, reducibility, and acidity, which was favorable for catalytic ozonation of toluene.
View Article and Find Full Text PDF