Rapid and accurate detection of goose parvovirus (GPV) is crucial for controlling outbreaks and mitigating their economic impact on the poultry industry. This study introduces recombinase polymerase amplification combined with the Pyrococcus furiosus argonaute (RPA-PfAgo) system, a novel diagnostic platform designed to address the limitations of traditional GPV detection methods. Capitalizing on the rapid DNA amplification of RPA and stringent nucleic acid cleavage by the PfAgo protein, the RPA-PfAgo system offers high specificity and sensitivity in detecting GPV.
View Article and Find Full Text PDFThis study introduces an efficient RPA-PfAgo detection system for the MTHFR C677T polymorphism, proposing a potential strategy to simplify the genotyping process. By optimizing recombinase polymerase amplification (RPA) with Pyrococcus furiosus Argonaute (PfAgo) nucleases, we achieved DNA amplification at a constant temperature. The assay was fine-tuned through meticulous primer and guide DNA selection, with optimal conditions established at 2.
View Article and Find Full Text PDFEndocannabinoid (eCB), 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain, regulates diverse neural functions. Here we linked multiple homozygous loss-of-function mutations in 2-AG synthase diacylglycerol lipase β (DAGLB) to an early onset autosomal recessive Parkinsonism. DAGLB is the main 2-AG synthase in human and mouse substantia nigra (SN) dopaminergic neurons (DANs).
View Article and Find Full Text PDFThe original article had mistakenly inverted co-author, Wang Zheng's name. This has since been corrected.
View Article and Find Full Text PDFBackground: Multiple missense mutations in Leucine-rich repeat kinase 2 (LRRK2) are associated with familial forms of late onset Parkinson's disease (PD), the most common age-related movement disorder. The dysfunction of dopamine transmission contributes to PD-related motor symptoms. Interestingly, LRRK2 is more abundant in the dopaminoceptive striatal spiny projection neurons (SPNs) compared to the dopamine-producing nigrostriatal dopaminergic neurons.
View Article and Find Full Text PDFParkinson's disease causes the most profound loss of the aldehyde dehydrogenase 1A1-positive (ALDH1A1) nigrostriatal dopaminergic neuron (nDAN) subpopulation. The connectivity and functionality of ALDH1A1 nDANs, however, remain poorly understood. Here, we show in rodent brains that ALDH1A1 nDANs project predominantly to the rostral dorsal striatum, from which they also receive most monosynaptic inputs, indicating extensive reciprocal innervations with the striatal spiny projection neurons (SPNs).
View Article and Find Full Text PDFAldehyde dehydrogenase 1A1 (ALDH1A1), a retinoic acid (RA) synthase, is selectively expressed by the nigrostriatal dopaminergic (nDA) neurons that preferentially degenerate in Parkinson's disease (PD). ALDH1A1-positive axons mainly project to the dorsal striatum. However, whether ALDH1A1 and its products regulate the activity of postsynaptic striatal neurons is unclear.
View Article and Find Full Text PDFBackground: Dynactin p150, the largest subunit of the dynactin macromolecular complex, binds to both microtubules and tubulin dimers through the N-terminal cytoskeleton-associated protein and glycine-rich (CAP-Gly) and basic domains, and serves as an anti-catastrophe factor in stabilizing microtubules in neurons. P150 also initiates dynein-mediated axonal retrograde transport. Multiple missense mutations at the CAP-Gly domain of p150 are associated with motor neuron diseases and other neurodegenerative disorders, further supporting the importance of microtubule domains (MTBDs) in p150 functions.
View Article and Find Full Text PDFTransl Neurodegener
January 2018
Background: Leucine-rich repeat kinase 2 (LRRK2) mutations represent the most common genetic cause of sporadic and familial Parkinson's disease (PD). Especially, LRRK2 G2019S missense mutation has been identified as the most prevalent genetic cause in the late-onset PD. Advanced glycation end products (AGEs) are produced in high amounts in diabetes and diverse aging-related disorders, such as cardiovascular disease, renal disease, and neurological disease.
View Article and Find Full Text PDFOxidative stress alters physiological function in most biological tissues and can lead to cell death. In the retina, oxidative stress initiates a cascade of events leading to focal loss of RPE and photoreceptors, which is thought to be a major contributing factor to geographic atrophy. Despite these implications, the molecular regulation of RPE oxidative stress under normal and pathological conditions remains largely unknown.
View Article and Find Full Text PDFMultiple missense mutations in Leucine-rich repeat kinase 2 (LRRK2) have been linked to Parkinson's disease (PD), the most common degenerative movement disorder. LRRK2 is expressed by both neurons and microglia, the residential immune cells in the brain. Increasing evidence supports a role of LRRK2 in modulating microglial activity, of which Lrrk2-null rodent microglia display less inflammatory response to endotoxin lipopolysaccharide (LPS).
View Article and Find Full Text PDFBackground: α-synuclein (α-syn) is the main component of intracytoplasmic inclusions deposited in the brains of patients with Parkinson's disease (PD) and certain other neurodegenerative disorders. Recent studies have explored the ability of α-syn to propagate between or across neighboring neurons and supposedly "infect" them with a prion-like mechanism. However, much of this research has used stereotaxic injections of heterologous α-syn fibrils to induce the spreading of inclusions in the rodent brains.
View Article and Find Full Text PDFMetabolic homeostasis is critical for all biological processes in the brain. The metabolites are considered the best indicators of cell states and their rapid fluxes are extremely sensitive to cellular changes. While there are a few studies on the metabolomics of Parkinson's disease, it lacks longitudinal studies of the brain metabolic pathways affected by aging and the disease.
View Article and Find Full Text PDFUnlabelled: Microglia are resident macrophages in the CNS that scavenge pathogens, dying cells, and molecules using pattern recognition Toll-like receptors (TLRs). Nuclear factor of activated T-cells (NFAT) family transcription factors also regulate inflammatory responses in microglia. However, whether there exists cross talk between TLR and NFAT signaling is unclear.
View Article and Find Full Text PDFDJ-1/PARK7 mutations or deletions cause autosomal recessive early onset Parkinson's disease (PD). Thus, DJ-1 protein has been extensively studied in brain and neurons. PD patients display visual symptoms; however, the visual symptoms specifically attributed to PD patients carrying DJ-1/PARK7 mutations are not known.
View Article and Find Full Text PDFPreferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons.
View Article and Find Full Text PDFBackground: Mutations in LRRK2 are related to certain forms of Parkinson's disease and, possibly, to the pathogenesis of Crohn's disease. In both these diseases inflammatory processes participate in the pathogenic process. LRRK2 is expressed in lymphoid cells and, interestingly, Lrrk2 (-/-) mice were reported to develop more severe experimental colitis than their wild type (WT) controls.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson's disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER-Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES).
View Article and Find Full Text PDFParkinson's disease (PD), the most common degenerative movement disorder, is caused by a preferential loss of midbrain dopaminergic (mDA) neurons. Both α-synuclein (α-syn) missense and multiplication mutations have been linked to PD. However, the underlying intracellular signalling transduction pathways of α-syn-mediated mDA neurodegeneration remain elusive.
View Article and Find Full Text PDFSubpopulations of dopaminergic (DA) neurons within the substantia nigra pars compacta (SNpc) display a differential vulnerability to loss in Parkinson's disease (PD); however, it is not clear why these subsets are preferentially selected in PD-associated neurodegeneration. In rodent SNpc, DA neurons can be divided into two subpopulations based on the expression of aldehyde dehydrogenase 1 (ALDH1A1). Here, we have shown that, in α-synuclein transgenic mice, a murine model of PD-related disease, DA neurodegeneration occurs mainly in a dorsomedial ALDH1A1-negative subpopulation that is also prone to cytotoxic aggregation of α-synuclein.
View Article and Find Full Text PDFDJ-1 is a protein expressed in many tissues including the brain where it has been extensively studied due to its association with Parkinson's Disease (PD). DJ-1 was reported to function as an antioxidant, redox-sensitive molecular chaperone, and transcription regulator, which protected cells from oxidative stress by modifying signaling pathways that regulate cell survival. Here we discuss our progress toward characterization of the DJ-1 function in the protection of RPE to oxidative stress.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) is enriched in the striatal projection neurons (SPNs). We found that LRRK2 negatively regulates protein kinase A (PKA) activity in the SPNs during synaptogenesis and in response to dopamine receptor Drd1 activation. LRRK2 interacted with PKA regulatory subunit IIβ (PKARIIβ).
View Article and Find Full Text PDFThe substitution of Proline with Serine at residue 56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) has been linked to an atypical autosomal dominant form of familial amyotrophic lateral sclerosis 8 (ALS8). To investigate the pathogenic mechanism of P56S VAPB in ALS, we generated transgenic (Tg) mice that heterologously express human wild-type (WT) and P56S VAPB under the control of a pan-neuronal promoter Thy1.2.
View Article and Find Full Text PDFRecent genome-wide association studies indicate that a simple alteration of Leucine-rich repeat kinase 2 (LRRK2) gene expression may contribute to the etiology of sporadic Parkinson's disease (PD). However, the expression and regulation of LRRK2 protein in the sporadic PD brains remain to be determined. Here, we found that the expression of LRRK2 protein was enhanced in the sporadic PD patients using the frontal cortex tissue from a set of 16 PD patients and 7 control samples.
View Article and Find Full Text PDFMutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with late-onset autosomal dominant Parkinson's disease. LRRK2 is highly expressed in immune cells and recent work points towards a link between LRRK2 and innate immunity. Here we demonstrate that stimulation of the Toll-Like Receptor (TLR) pathway by MyD88-dependent agonists in bone marrow-derived macrophages (BMDMs) or RAW264.
View Article and Find Full Text PDF