Publications by authors named "Chengming Jiang"

The mere token strategy, which adds a small reward (token) to an option to increase attractiveness, is widely used in the consumer field. However, we conducted six studies that seek to confirm the 'token undermining effect', where adding a small token to a sooner and smaller reward (SS) paired with a later and larger reward (LL) decreases the preference for the SS. The results showed that the effect persists across various choice sets, participant populations, reward amounts, delays, outcome properties and regardless of whether the scenarios are incentivized.

View Article and Find Full Text PDF

In the pursuit of artificial neural systems, the integration of multimodal plasticity, memory retention, and perceptual functions stands as a paramount objective in achieving neuromorphic perceptual components inspired by the human brain, to emulating the neurological excitability tuning observed in human visual and respiratory collaborations. Here, an artificial visual-respiratory synapse is presented with monolayer oxidized MXene (VRSOM) exhibiting synergistic light and atmospheric plasticity. The VRSOM enables to realize facile modulation of synaptic behaviors, encompassing postsynaptic current, sustained photoconductivity, stable facilitation/depression properties, and "learning-experience" behavior.

View Article and Find Full Text PDF

The fundamental logic states of 1 and 0 in Complementary Metal-Oxide-Semiconductor (CMOS) are essential for modern high-speed non-volatile solid-state memories. However, the accumulated storage signal in conventional physical components often leads to data distortion after multiple write operations. This necessitates a write-verify operation to ensure proper values within the 0/1 threshold ranges.

View Article and Find Full Text PDF

This paper proposes a adaptive reaching law-based sliding mode control (SMC) method for maintaining favorable velocity control performance of permanent magnet synchronous motors (PMSMs) under internal and external perturbations. An adaptive switching power reaching law (ASPRL) is designed, which contains adaptive terms and state variables of the sliding mode surface function. This augmented reaching law decreases the chatter of the control system and increases the rate at which the state variables of the system reach the sliding mode surface.

View Article and Find Full Text PDF

As high-voltage output and fast response devices, triboelectric nanogenerators (TENGs) are widely used for sensors with fast and high-sensitivity performance. As a primary electrical signal, the waveform output provides an accurate and rapid response to external stimulus parameters such as press and slide. Here, based on mosaic charging and residual charge theories, the contact charging principle of TENGs is further discussed.

View Article and Find Full Text PDF

Purpose: To evaluate the relationship between endoscopic ureteral inflammatory edema (UIE) and ureteral lumen, formulate a preliminary grading method for the severity of UIE, and analyze the impact of different grades of UIE on endoscopic ureteral calculi surgery and prognosis.

Materials And Methods: We retrospectively analyzed 185 patients who underwent ureteroscopic lithotripsy (URSL) for upper urinary tract stones between January 2021 and November 2021. The UIE grade and lumen conditions were assessed by endoscopic observation.

View Article and Find Full Text PDF

-heterocyclic carbene (NHC) has been widely used as an organocatalyst for both umpolung and non-umpolung chemistry. Previous works mainly focus on species including Breslow intermediate, azolium enolate intermediate, homoenolate intermediate, alkenyl acyl azolium intermediate, etc. Notably, the NHC-bound alkynyl acyl azolium has emerged as an effective intermediate to access functionalized cyclic molecular skeleton until very recently.

View Article and Find Full Text PDF

CD36 is a transmembrane glycoprotein that binds to a wide range of ligands, including fatty acids (FAs), cholesterol, thrombospondin-1 (TSP-1) and thrombospondin-2 (TSP-2), and plays an important role in lipid metabolism, immune response, and angiogenesis. Recent studies have highlighted the role of CD36 in mediating lipid uptake by tumor-associated immune cells and in promoting tumor cell progression. In cancer-associated fibroblasts (CAFs), CD36 regulates lipid uptake and matrix protein production to promote tumor proliferation.

View Article and Find Full Text PDF

Controllable photonic patterns have attracted great attention for various applications in displays, smart sensors, and communications. Conventional patterned light-emitting-diode (LED) systems require complicated design, complex procedure, and advanced equipment. Moreover, permanent properties of the fabricated patterns on LED restrict it from various important applications.

View Article and Find Full Text PDF

2D materials-based nanoelectromechanical resonant systems with high sensitivity can precisely trace quantities of ultra-small mass molecules and therefore are broadly applied in biological analysis, chemical sensing, and physical detection. However, conventional optical and capacitive transconductance schemes struggle to measure high-order mode resonant effectively, which is the scientific key to further achieving higher accuracy and lower noise. In the present study, the different vibrations of monolayer Ti C Tx MXene piezo-resonators are investigated, and achieve a high-order f resonant mode with a ≈234.

View Article and Find Full Text PDF

As an emerging two-dimensional (2D) material, MXene has excellent conductivity and abundant surface functional groups. Its unique layered structure, large surface area, and prominent hydrophilicity show remarkable performances, which allow abundant possibilities to work as the sensing element alone or combined with other auxiliary materials. As a senior member of MXenes, TiCT has shown great potential in the development of force sensors.

View Article and Find Full Text PDF

Prostate cancer remains the most prevalent cancer among men worldwide; however, as a sex hormone-dependent cancer, sex hormones and their receptor signaling play an important role in the development and progression of cancer. Most current treatment options for prostate cancer thus revolve around the inhibition of androgen signaling (eg, ADT), which, although effective in the early stages, eventually progresses to treatment-resistant prostate cancer with no effective follow-up options. Recent studies have shown that among the nuclear receptor family members, in addition to androgen receptors, estrogen receptor (ER) plays an important biological function as a transcription factor and regulatory protein in various cancers, acting either directly or indirectly by forming homodimers or heterodimers with ligands.

View Article and Find Full Text PDF

Introduction: The analgesic efficacy of magnesium sulphate added to bupivacaine for arthroscopy remains controversial. We conduct a systematic review and meta-analysis to explore the efficacy of magnesium sulphate in combination with bupivacaine for arthroscopy.

Methods: We searched PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through July 2020 for randomized controlled trials (RCTs) assessing the effect of magnesium sulphate plus bupivacaine versus bupivacaine for arthroscopy.

View Article and Find Full Text PDF

In this paper, a strategy to achieve a simultaneous wavefront shaping and polarization rotation, without compromising the number of pixels and energy efficiency as well as having broadband operation range, is proposed. This strategy is based on the application of a spin-decoupled phase metasurface composed by only one set of metal-insulator-metal (MIM) umbrella-shaped chiral unit cells. Quasi-non-dispersive and spin-decoupled phase shift can be achieved simply by changing single structural parameter of the structure.

View Article and Find Full Text PDF

Overexpression of reactive oxygen species in the substantia nigra pars compacta destroys dopaminergic neurons and accelerates the pathological process of Parkinson's disease (PD). In this study, a new hydrophilic nano-bioconjugate, lactoferrin (Lf)-modified Au-Bi Se nanodot (ND) for efficient PD therapy is developed. In particular, the Lf-Au-Bi Se NDs exhibit strong blood-brain barrier (BBB) permeation.

View Article and Find Full Text PDF

The development of flexible and transparent electromagnetic interference (EMI) shielding materials with excellent comprehensive properties is urgently demanded as visual windows and display devices in aeronautic, industry, medical, and research facilities. However, the method of how to obtain highly efficient and reliable transparent EMI shielding devices is still facing lots of obstacles. Here, a high-performance silver nanotube (AgNT) network with stable and integrated interconnects is prepared by physical depositing technology, based on a uniform and large-scale nanofiber skeleton.

View Article and Find Full Text PDF

People are more likely to make choices themselves than delegate to an agent, even when it may not be the most optimal decision based on a cost-benefit analysis. Previous studies have demonstrated that retaining authority and controllability might be the primary reason for preferring self-choice. The current study asks whether impairment of controllability associated with self-choice can increase the rate of delegation and whether there are self-other discrepancies in self-choice preference.

View Article and Find Full Text PDF

High-performance photo-triggered electronic devices have already become an abiding target of optoelectronics. Current results, involving high-sensitivity phototransistors with the enhancement of material properties or the modification of electrical field, need an independent external light-source system. Nevertheless, few research studies inform of circuits in which the logic channel can be directly light controlled by a fully integrated photogate.

View Article and Find Full Text PDF

Thin-film resonators and scanning probe microscopies (SPM) are usually used on low-frequency mechanical systems at the nanoscale or larger. Generally, off-chip approaches are applied to detect mechanical vibrations in these systems, but these methods are not much appropriate for atomic-thin-layer devices with ultrahigh characteristic frequencies and ultrathin thickness. Primarily, those mechanical devices based on atomic-layers provide highly improved properties, which are inapproachable with conventional nanoelectromechanical systems (NEMS).

View Article and Find Full Text PDF

Phototriggered devices have attracted attention due to their exceptional characteristics, advanced multifunctionalities and unprecedented applications in optoelectronic systems. Here, we report a pioneer structural device, a resonant photoeffect-transistor (RPET) with a functionalized nanowire (NW) charge transport channel, modulated by a near-field nanostrip organic light emitting diode (OLED) and controlled by a gate bias to realize exceptional photoelectric properties. The RPET presents high-quality nanowire channel characteristics due to tunable optical cavities manifesting strong standing wave resonance under controlled light emission.

View Article and Find Full Text PDF

Among the established findings in eye movement during decision-making, decision-makers are likely to choose the last fixated option, and this phenomenon has proven robust. However, the causal link between last fixation and choices requires further examination. In Study 1 (N = 40), a gaze-contingent manipulation paradigm was developed by controlling the timing of decision prompts to manipulate the last fixation.

View Article and Find Full Text PDF

High-responsivity photodevices are strongly desired for various demanding applications, such as optical communications, logic circuits, and sensors. The use of quantum and photon confinement has enabled a true revolution in the development of high-performance devices. Unfortunately, many practical optoelectronic devices exhibit intermediate sizes where resonant enhancement effects seem to be insignificant.

View Article and Find Full Text PDF
Article Synopsis
  • Highly foldable conducting interconnects are essential for flexible electronics, especially in wearable tech and medical devices, but traditional options face challenges with flexibility and stability.
  • Recent studies have explored various interconnect designs, but they often suffer from either poor mechanical stability or complex manufacturing processes.
  • A new flexible circuit using nanowave structure metal interconnects shows both excellent electrical performance and high flexibility, facilitating the development of advanced, foldable electronic devices like a paper-like wireless accelerometer.
View Article and Find Full Text PDF

To enhance the interfacial adhesion between poly(p-phenylene terephthalamide) (PPTA) fibers and a rubber matrix without damaging the fiber structures, aminated carbon nanotubes (NH-CNTs) were mildly deposited onto the fiber surface by combining the biomimetic modification of dopamine via the Michael addition reaction. Furthermore, differences between the "one-step" method and the "two-step" method were researched through adjusting the addition sequence of NH-CNTs. The surface morphologies and chemical structures of PPTA fibers before and after modification were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

The utilization of three-dimensional (3D) structures in next-generation nanodevices has been attractive due to the exceptional features they offer. These 3D structures can reduce component space and improve device properties compared to thin-film electronic components. The type of transistor applied in 3D nanodevices is one of the most widely studied components due to its rich physics and ubiquitous application.

View Article and Find Full Text PDF