Conductive hydrogels based on sodium alginate (SA) have potential applications in human activity monitoring and personal medical diagnosis due to their good conductivity and flexibility. However, most sensing SA-hydrogels exhibit poor mechanical properties and lack of self-healing, self-adhesive, and antibacterial properties, greatly limiting their practical applications. Therefore, in this paper, a multifunctional double-network PAA-SA hydrogel consisting of poly(acrylic acid) (PAA) and sodium alginate (SA) was prepared by a simple strategy.
View Article and Find Full Text PDFSodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt).
View Article and Find Full Text PDFResidual stress refers to self-equilibrating stress present within materials, with the potential to significantly affect manufacturing processes and performance. Therefore, accurately and quantitatively measuring residual stress is always of great importance. This study provides a comprehensive review of various characterization techniques for residual stress, including their principles, development history, applications, and limitations.
View Article and Find Full Text PDFMultifunctional hydrogels have great potential in smart wearable technology, flexible electronic devices, and biomedical research. However, it is highly challenging to prepare unique conductive hydrogels with combined properties such as self-healing, self-adhesive, and antibacterial activity. In this regard, herein, a conductive double network hydrogel (ACBt-PAA/CMCs) was fabricated using carboxymethyl chitosan (CMCs), acrylic acid (AA), and alkaline calcium bentonite (ACBt) via a convenient approach.
View Article and Find Full Text PDFBackground: So far, there have been no published population studies on the relationship between a COVID-19 infection and public risk perception, information source, knowledge, attitude, and behaviors during the COVID-19 outbreak in China.
Objective: This study aims to understand the relationships between COVID-19 infection; four personal nonpharmaceutical interventions (NPIs; handwashing, proper coughing habits, social distancing, and mask wearing); and public risk perception, knowledge, attitude, and other social demographic variables.
Methods: An online survey of 8158 Chinese adults between February 22 and March 5, 2020, was conducted.
In this paper, a unique device that can act as both multiplexer and demultiplexer is proposed with two all-metal compensating rods that makes the compensated chip almost the same spectrum profile as the original one. In this way a flat-top athermal arrayed-waveguide grating module of 100-GHz×40-ch is successfully fabricated. A small center wavelength shift of ±25 pm is achieved for the ultra-wide temperature range from -40°C to 85°C with the low insertion loss change of less than ±0.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
March 2012
Eu3+ and Dy(3+)-doped YVO4 nanocrystallites were successfully prepared at 400 degrees C in equal moles of NaNO3 and KNO3 molten salts. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electronic microscopy (TEM), photoluminescence (PL) spectrum and lifetime were used to characterize the nanocrystallites. XRD results demonstrate that NaOH concentration and annealing temperature play important roles in phase purity and crystallinity of the nanocrystallites, the optimum NaOH concentration and annealing temperature being 6:40 and 400 degrees C respectively.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
January 2012
Eu3+ and Dy(3+)-doped YVO4 nanocrystallites were successfully prepared at 400 degrees C in equal moles of NaNO3 and KNO3 molten salts. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electronic microscopy (TEM), photoluminescence (PL) spectrum and lifetime were used to characterize the nanocrystallites. XRD results demonstrate that NaOH concentration and annealing temperature play important roles in phase purity and crystallinity of the nanocrystallites, the optimum NaOH concentration and annealing temperature being 6:40 and 400 degrees C respectively.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
February 2012
To better evaluate the serum protein alterations in patients with laryngeal carcinoma during surgical treatment process, a comparative proteomic analysis of human serum from patients with laryngeal carcinoma between pre- and post-operation group was performed using two-dimensional gel electrophoresis, in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry and database searching. Statistical analysis indicated that 16 gel spots corresponding to 12 proteins altered their expression significantly between the two groups of patients with laryngeal carcinoma. Of these 12 proteins, 6 proteins were up-regulated in the pre-operation group.
View Article and Find Full Text PDF