Vascular calcification (VC) has a high incidence in patients with chronic kidney disease, which is a worldwide public health problem and presents a heavy burden to society. Hypoxia-inducible factor (HIF)-1, the active subunit of HIF-1, has been reported to play a vital role in high phosphate-induced VC. However, the underlying mechanism is still undetermined, and effective treatment is unavailable.
View Article and Find Full Text PDFBackground: Peripheral nerve injury is a common disorder associated with damaged axons and distal myelin sheath degeneration, and Schwann cells play a paramount role in peripheral nerve regeneration. This study aims to explore the role of microRNA miR-148b-3p on Schwann cells after peripheral nerve injury.
Methods: Sciatic nerve transection was conducted in rat as the model of peripheral nerve injury.
The high incidence of vascular calcification (VC) in patients with chronic kidney disease (CKD) has become an important clinical subject. Hyperphosphatemia is a primary cause of CKD-related VC. Intravenous iron sucrose (IS) is commonly used to treat anemia in CKD patients, and is effective and well tolerated worldwide.
View Article and Find Full Text PDFObstacles associated with graphene as transparent conductive films mainly consist of the difficulties in high-quality graphene synthesis, efficient transfer and doping of samples with lateral size of tens of centimeters for practical applications. Herein we demonstrate a hot-roll-pressing transfer technique followed by wet-chemical doping of large area graphene film grown on copper foil by chemical vapor deposition (CVD). This method enabled cost-effective and ultraclean transfer of single-layer graphene with an arbitrary size onto transparent ethylene vinyl acetate/polyethylene terephthalate (EVA/PET) substrate without any polymer residues.
View Article and Find Full Text PDFUsing the non-equilibrium Green's function formalism in combination with density functional theory, we calculated the spin-dependent electronic properties of molecular devices consisting of pristine and hydrogen-terminated zigzag gallium nitride nanoribbons (ZGaNNRs). Computational results show that the proposed ZGaNNR models display multiple functions with perfect spin filtering, rectification, and a spin negative differential resistance (sNDR) effect. Spin-dependent transport properties, spin density and transmission pathways with applied bias values were calculated to understand the spin filter and the sNDR effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2017
Lithium-sulfur batteries are widely seen as a promising next-generation energy-storage system owing to their ultrahigh energy density. Although extensive research efforts have tackled poor cycling performance and self-discharge, battery stability has been improved at the expense of energy density. We have developed an interlayer consisting of two-layer chemical vapor deposition (CVD)-grown graphene supported by a conventional polypropylene (PP) separator.
View Article and Find Full Text PDFLithium metal is an attractive anode material for rechargeable batteries because of its high theoretical specific capacity of 3860 mA h g and the lowest negative electrochemical potential of -3.040 V versus standard hydrogen electrode. Despite extensive research efforts on tackling the safety concern raised by Li dendrites, inhibited Li dendrite growth is accompanied with decreased areal capacity and Li utilization, which are still lower than expectation for practical use.
View Article and Find Full Text PDFChem Commun (Camb)
August 2010
Cheap and simple Cu/ZnO catalysts are very effective and recyclable for the synthesis of dimethylformamide (DMF) from CO(2), H(2), and dimethylamine, and a yield of 97% can be reached.
View Article and Find Full Text PDF