Vet Microbiol
November 2017
Equine Influenza (EI) is an important respiratory disease of horses caused by H3N8 equine influenza viruses (EIV). Vaccination is a key strategy to prevent or control this disease. However, EIV undergoes continuous antigenic drift and whilst numerous EI vaccines are commercially available worldwide, an accurate evaluation of their efficacy is frequently required through clinical trials conducted in the natural host.
View Article and Find Full Text PDFA stable full-length cDNA clone of the modified live virus (MLV) vaccine strain of equine arteritis virus (EAV) was developed. RNA transcripts generated from this plasmid (pEAVrMLV) were infectious upon transfection into mammalian cells, and the resultant recombinant virus (rMLV) had 100% nucleotide identity to the parental MLV vaccine strain of EAV. A single silent nucleotide substitution was introduced into the nucleocapsid gene (pEAVrMLVB), enabling the cloned vaccine virus (rMLVB) to be distinguished from parental MLV vaccine as well as other field and laboratory strains of EAV by using an allelic discrimination real-time reverse transcription (RT)-PCR assay.
View Article and Find Full Text PDFEquine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are members of family Arteriviridae; they are highly species specific and differ significantly in cellular tropism in cultured cells. In this study we examined the role of the two major envelope proteins (GP5 and M) of EAV and PRRSV in determining their cellular tropism. We generated three viable EAV/PRRSV chimeric viruses by swapping the N-terminal ectodomains of these two proteins from PRRSV IA1107 strain into an infectious cDNA clone of EAV (rMLVB4/5 GP5ecto, rMLVB4/5/6 Mecto and rMLVB4/5/6 GP5&Mecto).
View Article and Find Full Text PDF