Publications by authors named "Chengjie Xia"

Article Synopsis
  • - Baicalin (BA), a natural ingredient in traditional Chinese medicine, has protective effects against various viruses, including hepatitis B virus (HBV), but the mechanisms behind this activity are not fully understood.
  • - This study found that BA influences the estrogen receptor (ER) and AMPK signaling pathways in liver cells (HepG2), indicating a complex interaction that supports its anti-HBV properties.
  • - The research highlights the importance of the ERα-LKB1-AMPK-HNF signaling pathway in BA's ability to suppress HBV replication, suggesting potential mechanisms for its protective effects against other viral infections.
View Article and Find Full Text PDF

With magnetic resonance imaging experiments, we study packings of granular spherocylinders with merely 2% asphericity. Evident structural anisotropies across all length scales are identified. Most interestingly, the global nematic order decreases with increasing packing fraction, while the local contact anisotropy shows an opposing trend.

View Article and Find Full Text PDF

The microscopic stress field inhomogeneity in the interfacial region adjacent to the liquid surface is the fundamental origin of the liquid surface tension, but because of broadening due to capillary fluctuations, a detailed molecular level understanding of the stress field remains elusive. In this work, we deconvolute the capillary fluctuations to reveal the intrinsic stress field and show that the atomic-level contributions to the surface tension are similar in functional form across a variety of monatomic systems. These contributions are confined to an interfacial region approximately 1.

View Article and Find Full Text PDF

Centrifugation is one of the most commonly used methods for separation in biology and chemistry. However, effective fractionation is not always easy to obtain, as preparative centrifuge experiments are mostly conducted in an empirical way, even when it is guided by the quantitative results from analytical ultracentrifuge (AUC). Very few works have been performed to enhance the fractionation resolution of the differential centrifugation method in a swing-out rotor.

View Article and Find Full Text PDF

Packing structures of granular disks are reconstructed using magnetic resonance imaging techniques. As packing fraction increases, the packing structure transforms from a nematic loose packing to a dense packing with randomly oriented stacks. According to our model based on Edwards' volume ensemble, stack structures are statistically favored when the effective temperature decreases, which has a lower structural anisotropy than single disks, and brings down the global orientational order consequently.

View Article and Find Full Text PDF

Using particle trajectory data obtained from x-ray tomography, we determine two kinds of effective temperatures in a cyclically sheared granular system. The first one is obtained from the fluctuation-dissipation theorem which relates the diffusion and mobility of lighter tracer particles immersed in the system. The second is the Edwards compactivity defined via the packing volume fluctuations.

View Article and Find Full Text PDF

The anti-hepatitis B virus (HBV) efficacy of baicalin (BA) is mediated by HBV-related hepatocyte nuclear factors (HNFs). However, this efficacy is severely limited by the low bioavailability of BA. Therefore, a novel liver-targeted BA liposome was constructed to promote the bioavailability and antiviral ability of BA.

View Article and Find Full Text PDF

Background: Influenza A virus infection results in viral pneumonia, which is often accompanied by the infiltration and recruitment of macrophages, overactivation of inflammatory responses, and obvious cell autophagy and exosome production. However, little is known about the roles of autophagy and exosome production in these inflammatory responses.

Methods: In this study, multiple methods, such as flow cytometry, real-time quantitative reverse transcription-polymerase chain reaction, immune-fluorescence technology, and western blot, were applied to explore the possible effects of autophagy and exosome production by H1N1-infected host cells.

View Article and Find Full Text PDF

Packings of granular particles may transform into ordered structures under external agitation, which is a special type of out-of-equilibrium self-assembly. Here, evolution of the internal packing structures of granular cubes under cyclic rotating shearing has been analyzed using magnetic resonance imaging techniques. Various order parameters, different types of contacts and clusters composed of face-contacting cubes, as well as the free volume regions in which each cube can move freely have been analyzed systematically to quantify the ordering process and the underlying mechanism of this granular self-assembly.

View Article and Find Full Text PDF

Packing structures of granular cylinders with the aspect ratio close to one have been reconstructed with the help of magnetic resonance imaging techniques. By controlling the container boundary conditions and preparation protocols, a structural transformation from a disordered liquid-like state to an orientationally ordered state with cubatic symmetry at a high packing fraction is observed. This ordering process is accompanied by the formation of more faceted contacts, which lower the elastic energy between jammed granular particles to drive the transformation.

View Article and Find Full Text PDF

Normally, the impact of electromagnetic exposure on human health is evaluated by animal study. The biological effect caused by electromagnetic exposure on such experimental animals as rats has been proven to be dose-dependent. However, though the dose of radio frequency (RF) electromagnetic exposure described by the specific absorbing rate (SAR) on fixed rats has been relatively well-studied utilizing the numerical simulations, the dosimetry study of exposure on free rat is insufficient, especially in the cases of two or more free rats.

View Article and Find Full Text PDF

Using x-ray tomography, we experimentally investigate granular packings subject to mechanical tapping for three types of beads with different friction coefficients. We validate the Edwards volume ensemble in these three-dimensional granular systems and establish a granular version of thermodynamic zeroth law. Within the Edwards framework, we also explicitly clarify how friction influences granular statistical mechanics by modifying the density of states, which allows us to determine the entropy as a function of packing fraction and friction.

View Article and Find Full Text PDF

The jamming transition and jammed packing structures of hydrogel soft ellipsoids are studied using magnetic resonance imaging techniques. As the packing fraction increases, the fluctuation of local free volume decreases and the fluctuation of particle deformation increases. Effective thermodynamic quantities are obtained by characterizing these fluctuations using k-gamma distributions based on an underlying statistical model for granular materials.

View Article and Find Full Text PDF

Background And Aims: The natural compound baicalin (BA) possesses potent antiviral properties against the influenza virus. However, the underlying molecular mechanisms of this antiviral activity and whether macrophages are involved remain unclear. In this study, we, therefore, investigated the effect of BA on macrophages.

View Article and Find Full Text PDF

Baicalin (BA) inhibits hepatitis B virus (HBV) RNAs production and reduces levels of the related hepatocyte nuclear factors (HNFs), although the underlying mechanism is unclear. In this study, we investigated the specific pathway by which BA regulates HBV transcription through the HBV-related HNFs. Following transfection of HepG2 cells with pHBV1.

View Article and Find Full Text PDF

Upon mechanical loading, granular materials yield and undergo plastic deformation. The nature of plastic deformation is essential for the development of the macroscopic constitutive models and the understanding of shear band formation. However, we still do not fully understand the microscopic nature of plastic deformation in disordered granular materials.

View Article and Find Full Text PDF

We use x-ray tomography to investigate the translational and rotational dynamical heterogeneities of a three dimensional hard ellipsoid granular packing driven by oscillatory shear. We find that particles which translate quickly form clusters with a size distribution given by a power law with an exponent that is independent of the strain amplitude. Identical behavior is found for particles that are translating slowly, rotating quickly, or rotating slowly.

View Article and Find Full Text PDF

Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they 'relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems.

View Article and Find Full Text PDF

Recent diffraction experiments on metallic glasses have unveiled an unexpected noncubic scaling law between density and average interatomic distance, which led to the speculation of the presence of fractal glass order. Using x-ray tomography we identify here a similar noncubic scaling law in disordered granular packing of spherical particles. We find that the scaling law is directly related to the contact neighbors within the first nearest neighbor shell, and, therefore, is closely connected to the phenomenon of jamming.

View Article and Find Full Text PDF

Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a 'hidden' polytetrahedral order.

View Article and Find Full Text PDF

We present an x-ray microtomography study of the three-dimensional structural correlations in monodisperse granular packings. By measuring an orientation-dependent pair correlation function, we find that the local structure shows an angularly anisotropic orientation correlation. The correlation is strongest along the major axis of the local Minkowski tensor of the Voronoi cell.

View Article and Find Full Text PDF

To date, there is still no general consensus on the fundamental principle that governs glass transition. Colloidal suspensions are ordinarily utilized as model systems to study the dynamical arrest mechanisms in glass or gels. Here, we tackle the problem using athermal granular particles.

View Article and Find Full Text PDF

We present an X-ray tomography study for the random packing of ellipsoids. The local structure displays short-range correlations. In addition to the contact number Z, we introduce ρshell, the average contact radius of curvature for contacting neighbors, as an additional parameter to characterize the local orientational geometry.

View Article and Find Full Text PDF