Publications by authors named "Chengjiao Hong"

Article Synopsis
  • Radon is a natural gas that can cause lung cancer, and this study looked at how it harms DNA in mice and human lung cells.
  • The researchers checked for DNA damage and how the cells tried to fix it after being exposed to radon.
  • They found that radon exposure caused serious DNA problems and triggered specific cell repair processes, meaning cells worked to survive the damage done by the gas.
View Article and Find Full Text PDF

A plethora of studies have shown the prominent hepatotoxicity caused by perfluorooctane sulfonate (PFOS), yet the research on the causality of F-53 B (an alternative for PFOS) exposure and liver toxicity, especially in mammals, is largely limited. To investigate the effects that chronic exposure to F-53 B exert on livers, in the present study, male SD rats were administrated with F-53 B in a certain dose range (0, 1, 10, 100, 1000 μg/L, eight rats per group) for 6 months via drinking water and the hepatotoxicity resulted in was explored. We reported that chronic exposure to 100 and 1000 μg/L F-53 B induced remarkable histopathological changes in liver tissues such as distinct swollen cells and portal vein congestion.

View Article and Find Full Text PDF

Backgrouds: As a human carcinogen, radon and its progeny are the second most important risk factor for lung cancer after smoking. The tumor suppressor gene, , is reported to play an important role in the maintenance of mitochondrial function. In this work, we investigated the association between p53 and p53-responsive signaling pathways and radon-induced carcinogenesis.

View Article and Find Full Text PDF

Radon is one of the major pathogenic factors worldwide. Recently, epidemiological studies have suggested that radon exposure plays an important role in lung injury, which could further cause cancer. However, the toxic effects and underlying mechanism on lung injury are still not clear.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is a gasotransmitter and a potential therapeutic agent. However, molecular targets relevant to its therapeutic actions remain enigmatic. Sulfide-quinone oxidoreductase (SQR) irreversibly oxidizes HS.

View Article and Find Full Text PDF

The organic alkylphenol 4-nonylphenol (NP) is regarded to be an endocrine disrupting chemical (EDC), one of the widely diffused and stable environmental contaminants. Due to its hydrophobicity and long half-life, NP can easily accumulate in living organisms, including humans, where it displays a series of toxic effects. It has been widely reported that NP affects male reproduction.

View Article and Find Full Text PDF

Bisphenol A (BPA), identified as an endocrine disruptor, is an important man-made compound used in a wide range of consumer products. The MTT assay, comet assay, micronucleus test, chromosome aberration test, and Ames assay were conducted to assess the cytotoxic, genotoxic, cytogenetic effects, and mutagenic activity of BPA. After BPA exposure, we showed significant increases in cytotoxicity and level of DNA damage indicated by Olive tail moment, tail length, and % tail DNA in a similar dose- and time-dependent manner.

View Article and Find Full Text PDF

A novel formulation containing polyvinylpyrrolidone (PVP) K(30)-coated norcantharidin (NCTD) chitosan nanoparticles (PVP-NCTD-NPs) was prepared by ionic gelation between chitosan and sodium tripolyphosphate. The average particle size of the PVP-NCTD-NPs produced was 140.03 ± 6.

View Article and Find Full Text PDF

Background & Objective: Paclitaxel is a radiosensitizer which may stabilize microtubules, block the G2/M phase of the cell cycle and thus modulate the radioresponsiveness of tumor cells. However, its potential molecular mechanisms of radiosensitization have not been well understood yet. This study was to investigate the radiosensitizing effect of paclitaxel on human oral epithelium carcinoma (KB) cell line and to explore the molecular mechanism of radiosensitization.

View Article and Find Full Text PDF

Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd(3+) treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200kD) comprising both Rubisco and Rubisco activase.

View Article and Find Full Text PDF