Publications by authors named "Chengjia You"

Wnt signaling is an important target for anabolic therapies in osteoporosis. A sclerostin-neutralizing antibody (Scl-Ab), that blocks the Wnt signaling inhibitor (sclerostin), has been shown to promote bone mass in animal models and clinical studies. However, the cellular mechanisms by which Wnt signaling promotes osteogenesis remain to be further investigated.

View Article and Find Full Text PDF

For a wide range of chronic autoimmune and inflammatory diseases in both adults and children, synthetic glucocorticoids (GCs) are one of the most effective treatments. However, besides other adverse effects, GCs inhibit bone mass at multiple levels, and at different ages, especially in puberty. Although extensive studies have investigated the mechanism of GC-induced osteoporosis, their target cell populations still be obscure.

View Article and Find Full Text PDF

Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage.

View Article and Find Full Text PDF

Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved.

View Article and Find Full Text PDF

Objective: To investigate whether and how global O-linked N-Acetylglucosamine modification (O-GlcNAcylation), a prevalent nutrient-sensitive post-translation modification, regulates odontogenic differentiation and mineralization in human dental pulp cells (hDPCs).

Design: First, immunostaining assays on sections of dental pulp tissue were performed to detect the distributions of O-GlcNAcylation and its exclusive enzyme set O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Then global O-GlcNAcylation was determined by anti O-linked N-Acetylglucosamine (RL2) Western blot during odontogenesis of hDPCs.

View Article and Find Full Text PDF