A hypervalent iodine-reagent-based C-H functionalization strategy was utilized to synthesize diaryl ethers. This method directly transforms various arenes into their corresponding diaryliodonium salts, followed by a C-O coupling reaction to produce structurally diverse diaryl ethers. The efficacy of this approach in the late-stage structural modifications of complex molecules was demonstrated.
View Article and Find Full Text PDFBreast cancer, the most prevalent malignancy in women, often progresses to bone metastases, especially in older individuals. Dormancy, a critical aspect of bone-metastasized breast cancer cells (BCCs), enables them to evade treatment and recur. This dormant state is regulated by bone marrow mesenchymal stem cells (BMMSCs) through the secretion of various factors, including those associated with senescence.
View Article and Find Full Text PDF'General requirements for the production of extracellular vesicles derived from human stem cells' is the first guideline for stem cells derived extracellular vesicles in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the general requirements, process requirements, packaging and labelling requirements and storage requirements for preparing extracellular vesicles derived from human stem cells, which is applicable to the research and production of extracellular vesicles derived from stem cells. It was originally released by the China Society for Cell Biology on 30 August 2022.
View Article and Find Full Text PDFSympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the β2-adrenergic receptor (βAR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone.
View Article and Find Full Text PDFInnervation and extracellular vesicle secretion co-exist in the local tissue microenvironment for message transfer, but whether they are interconnected to regulate organ homeostasis remains unknown. Sympatho-adrenergic activation is implicated in stress-induced depression and leads to bone loss, but the mechanisms and therapeutics are incompletely elucidated. Here, it is revealed that sympathetic neurostress through the β -adrenergic receptor (β1/2-AR) signaling triggers the transcription response of a microRNA, miR-21, in osteoblasts, which is transferred to osteoclast progenitors via exosomes for dictating osteoclastogenesis.
View Article and Find Full Text PDFEarly orthodontic correction of skeletal malocclusion takes advantage of mechanical force to stimulate unclosed suture remodeling and to promote bone reconstruction; however, the underlying mechanisms remain largely unclear. Gli1 cells in maxillofacial sutures have been shown to participate in maxillofacial bone development and damage repair. Nevertheless, it remains to be investigated whether these cells participate in mechanical force-induced bone remodeling during orthodontic treatment of skeletal malocclusion.
View Article and Find Full Text PDFBackground: Hepatic steatosis is a big hurdle to treat type 2 diabetes (T2D). Fasting-mimicking diet (FMD) has been shown to be an effective intervention in dyslipidemia of T2D. However, fasting may impair the normal glucose metabolism.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is a major threat to global public health, with increasing prevalence as well as high morbidity and mortality, to which immune dysfunction has been recognized as a crucial contributor. Mesenchymal stromal cells (MSCs), obtained from various sources and possessing potent immunomodulatory abilities, have displayed great therapeutic potential for T2DM. Interestingly, the immunomodulatory capabilities of MSCs are endowed and plastic.
View Article and Find Full Text PDFMesenchymal stem/stromal cells (MSCs) reside in the perivascular niche and modulate tissue/organ homeostasis; however, little is known about whether and how their localization and function are linked. Particularly, whether specific MSC subsets couple with and regulate specialized vessel subtypes is unclear. Here, we show that Gli1 cells, which are a subpopulation of MSCs couple with and regulate a specialized form of vasculature.
View Article and Find Full Text PDFObjectives: Gli1 cells have received extensive attention in tissue homeostasis and injury mobilization. The aim of this study was to investigate whether Gli1 cells respond to force and contribute to bone remodelling.
Materials And Methods: We established orthodontic tooth movement (OTM) model to assess the bone response for mechanical force.
The loss-of-function mutations in the ALPL result in hypophosphatasia (HPP), an inborn metabolic disorder that causes skeletal mineralization defects. In adults, the main clinical features are early loss of primary or secondary teeth, osteoporosis, bone pain, chondrocalcinosis, and fractures. However, guidelines for the treatment of adults with HPP are not available.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have putative roles in maintaining adult tissue health, and the functional decline of MSCs has emerged as a crucial pathophysiological driver of various diseases. Epigenetic regulation is essential for establishing and preserving MSC homeostasis in vivo. Furthermore, growing evidence suggests that epigenetic dysregulation contributes to age- and disease-associated MSC alterations.
View Article and Find Full Text PDFMitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies.
View Article and Find Full Text PDFOsteoporosis develops with high prevalence in both postmenopausal women and hypogonadal men. Osteoporosis results in significant morbidity, but no cure has been established. Mesenchymal stem cells (MSCs) critically contribute to bone homeostasis and possess potent immunomodulatory/anti-inflammatory capability.
View Article and Find Full Text PDFLineage differentiation of bone marrow mesenchymal stem cells (BMMSCs) is the key to bone-fat reciprocity in bone marrow. To date, the regulators of BMMSC lineage switching have all been identified to be transcription factors, and researchers have not determined whether other genes control this process. This study aims to reveal a previously unknown role of tissue-nonspecific alkaline phosphatase (TNSALP) in controlling BMMSC lineage selection.
View Article and Find Full Text PDFPhotoreceptor cell death is recognized as the key pathogenesis of retinal degeneration, but the molecular basis underlying photoreceptor-specific cell loss in retinal damaging conditions is virtually unknown. The N-myc downstream regulated gene (NDRG) family has recently been reported to regulate cell viability, in particular NDRG1 has been uncovered expression in photoreceptor cells. Accordingly, we herein examined the potential roles of NDRGs in mediating photoreceptor-specific cell loss in retinal damages.
View Article and Find Full Text PDFMutations in the liver/bone/kidney alkaline phosphatase () gene cause hypophosphatasia (HPP) and early-onset bone dysplasia, suggesting that this gene is a key factor in human bone development. However, how and where acts in bone ageing is largely unknown. Here, we determined that ablation of induces prototypical premature bone ageing characteristics, including bone mass loss and marrow fat gain coupled with elevated expression of p16 (p16) and p53 due to senescence and impaired differentiation in mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFMethods Mol Biol
March 2020
The niche plays critical roles in regulating functionality and determining regenerative outcomes of stem cells, for which establishment of favorable microenvironments is in demand in translational medicine. In recent years, the cell aggregate technology has shown immense potential to reconstruct a beneficial topical niche for stem cell-mediated regeneration, which has been recognized as a promising concept for high-density stem cell delivery with preservation of the self-produced, tissue-specific extracellular matrix microenvironments. Here, we describe the basic methodology of stem cell aggregate-based niche engineering and quality check indexes prior to application.
View Article and Find Full Text PDFPulp necrosis arrests root development in injured immature permanent teeth, which may result in tooth loss. However, dental pulp regeneration and promotion of root development remains challenging. We show that implantation of autologous tooth stem cells from deciduous teeth regenerated dental pulp with an odontoblast layer, blood vessels, and nerves in two animal models.
View Article and Find Full Text PDF