Compound floods are becoming a growing threat in coastal cities against a background of global sea level rise (SLR), and may cause increasing impacts on societal safety and economy. How to quantify the impact of SLR and compound effects among various flood causes on compound flood have become important challenges. We propose a modeling framework which integrates atmospheric, storm tide and urban flood (IASTUF) models to characterize the various physical processes related to compound flood.
View Article and Find Full Text PDFThe adverse impacts of climate and landuse change are threatening the availability of water quantity and its quality, yet there are limited understandings in the response of water availability to changing environment at different spatio-temporal scales. Aimed at quantifying the individual and superimposed effects of climate and landuse change on streamflow and ammonia nitrogen (NH-N) load in the Dongjiang River Basin (DRB), we dynamically simulated the historical (1981-2010) and future (2030-2070) variation of runoff depth and NH-N load coupling multiple regional climate model and landuse data. The increase in runoff depth (avg.
View Article and Find Full Text PDFThe excessive application of agricultural irrigation water and chemical fertilizer has increased crop yields to help meet the demand for food, but it has also led to major water environment problem, i.e. non-point source (NPS) pollution, which needs to be addressed to achieve sustainable development targets.
View Article and Find Full Text PDFDue to the increasingly frequent occurrence of urban waterlogging, the spatial optimization of low impact development (LID) practices has been commonly used to detain and reduce storm water runoff in the most cost-effective way. In this study, the flow transmission chain (FTC) was proposed to replace the routing portion of the Storm Water Management Model (SWMM) and was combined with the runoff component of the SWMM to simulate LID practices (SWMM-FTC). In the SWMM-FTC, the third Evolution Step of Generalized Differential Evolution (GDE3) was employed to optimize the LID layout design.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2021
Landscape patterns have a substantial effect on non-point source (NPS) pollution in watersheds. Facilitating sustainable development of mountain-rural areas is a major priority for China. Knowledge of the impacts of various landscapes on water quality in these areas is critical to meeting environmental goals.
View Article and Find Full Text PDFSoil erosion has become one of the most serious environmental problems worldwide, and rainfall is considered a crucial factor in water erosion. Rainfall erosivity is defined as the ability of precipitation to trigger soil erosion. The accurate assessment of rainfall erosivity is essential before taking appropriate measures to stop or slow down water erosion.
View Article and Find Full Text PDFFlooding is a major natural disaster that has brought tremendous losses to mankind throughout the ages. Even so, floods can be controlled by appropriate measures to minimize loss and damage. Flood risk assessment is an essential analytic step in preventing floods and reducing losses.
View Article and Find Full Text PDFThe analysis of the impact of drought events on terrestrial net primary productivity (NPP) is significant to understand the effects of droughts on regional/global carbon cycling. During the past three decades, terrestrial ecosystems in mainland China have been frequently impacted by drought events. However, quantitative analyses of the variation of NPP induced by droughts are still not enough.
View Article and Find Full Text PDFSci Total Environ
February 2019
Long-term (over 30a) satellite-based quantitative rainfall estimate (SRE) products provide an ideal data source for hydrological drought monitoring. This study mainly explores the suitability of the two long-term SREs, the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and the Climate Hazards Group (CHG) Infrared Precipitation with Stations (CHIRPS), for hydrological drought monitoring. A hydrological drought index called the standardized streamflow index (SSI) was used as an example and the Grid-based Xinanjiang (GXAJ) hydrological model was used for streamflow generation of the SREs.
View Article and Find Full Text PDFLand use and land cover patterns in mainland China have substantially changed in the recent decades under the economic reform policies of the government. The terrestrial carbon cycle, particularly the net primary productivity (NPP), has been substantially changed on both local and national scales. With the growing concern over the effects of the terrestrial carbon cycle on global climate changes, the impacts of land use and cover change (LUCC) on NPP need to be understood.
View Article and Find Full Text PDFDegradation of freshwater ecosystems and the services they provide is a primary cause of increasing water insecurity, raising the need for integrated solutions to freshwater management. While methods for characterizing the multi-faceted challenges of managing freshwater ecosystems abound, they tend to emphasize either social or ecological dimensions and fall short of being truly integrative. This paper suggests that management for sustainability of freshwater systems needs to consider the linkages between human water uses, freshwater ecosystems and governance.
View Article and Find Full Text PDFSci Total Environ
February 2017
In recent decades, the occurrence and severity of drought in China has had devastating impact on social and economic development. The increase in drought has been attributed to global warming. We used the high-accuracy self-calibrating Palmer Drought Severity Index (scPDSI) to investigate the variation in drought in China between 1961 and 2009 using the Mann-Kendall (MK), continuous wavelet transform (CWT) and the rotated empirical orthogonal function (REOF) methods.
View Article and Find Full Text PDF