Publications by authors named "Chenggu Cai"

Article Synopsis
  • Cotton stalk, a by-product of cotton farming, has not been well-studied for its lignocellulosic properties, complicating its use as a feedstock.
  • This research analyzes the composition of cotton stalk's lignocellulose components and the structural characteristics of its lignin.
  • The study demonstrates that cotton stalk hydrolysates can effectively produce single-cell protein using the microbe Candida utilis, achieving a concentration of 5.74 g/L and offering insights for better utilization of cotton stalk in feedstock applications.
View Article and Find Full Text PDF

The isomerization of xylose to xylulose is considered the most promising approach to initiate xylose bioconversion. Here, phylogeny-guided big data mining, rational modification, and ancestral sequence reconstruction strategies were implemented to explore new active xylose isomerases (XIs) for . Significantly, 13 new active XIs for were mined or artificially created.

View Article and Find Full Text PDF

Insect development requires genes to be expressed in strict spatiotemporal order. The dynamic regulation of genes involved in insect development is partly orchestrated by the histone acetylation-deacetylation via histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although histone deacetylase 3 (HDAC3) is required for mice during early embryonic development, its functions in () and its potential to be used as a target of insecticides remain unclear.

View Article and Find Full Text PDF

Bioconversion is being regarded as a promising way for lignin valorization because it enables funneling diverse lignin components into single compounds, overcoming the heterogeneity of lignin. Although numerous lignin-derived aromatic monomers have been funneled to target compounds in previous studies, the bioconversion of low-molecular-weight lignin (LMW-lignin) fragments, for example, lignin-derived dimers, has been rarely systematically studied, impeding further conversion of lignin. In this study, coculture systems were designed and developed to funnel multiple lignin-derived dimers to cis, cis-muconate and gallate by combining lignin-derived dimers cleavage bacterium Sphingobium sp.

View Article and Find Full Text PDF

Vanillin bioconversion is important for the biological lignin valorization. In this study, the obscure vanillin metabolic distribution in Rhodoccous opacus PD630 was deciphered by combining the strategies of intermediate detection, putative gene prediction, and target gene verification. The results suggest that approximately 10% (mol/mol) of consumed vanillin is converted to vanillic acid for further metabolism, and a large amount is converted to dead-end vanillyl alcohol in R.

View Article and Find Full Text PDF

Converting lignin components into a single product is a promising way to upgrade lignin. Here, an efficient biocatalyst was developed to selectively produce gallate from lignin components by integrating three main reactions: hydroxylation, O-demethylation, and aryl side-chain oxidation. A rationally designed hydroxylase system was first introduced into a gallate biodegradation pathway–blocked mutant so that gallate accumulated from protocatechuate and compounds in its upper pathways.

View Article and Find Full Text PDF

Biological approaches play an important role in lignin valorization, whereas many issues in this area remain unclear. Herein, ligninolytic enzymes in Pseudomonas putida NX-1 were systematically unraveled based on genome sequence technology. Particularly, a dye-decolorizing peroxidase was systematically studied by heterologous expression, enzyme purification, and enzymatic characterization, which suggested it possessed activities on both synthetic dyes and lignin-derived aromatics.

View Article and Find Full Text PDF

The sweet protein monellin has high sweet potency with limited stability. In this study, 3 double-sites mutants (E2N/E23A, E2N/Y65R and E23A/Y65R) of the single-chain monellin (MNEI) were constructed. The proteins were expressed in E.

View Article and Find Full Text PDF

Objectives: To improve the stability and sweetness of the sweet-tasting protein, monellin, by using site-directed mutagenesis and a Pichia pastoris expression system with a GAPDH constitutive promoter.

Results: Both wild-type and E2 N mutant of single-chain monellin gene were cloned into the PGAPZαA vector and expressed in Pichia pastoris. The majority of the secreted recombinant protein, at 0.

View Article and Find Full Text PDF

Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey.

View Article and Find Full Text PDF

Natural sweet protein monellin has a high sweetness and low calorie, suggesting its potential in food applications. However, due to its low heat and acid resistance, the application of monellin is limited. In this study, we show that the thermostability of monellin can be improved with no sweetness decrease by means of sequence, structure analysis, and site-directed mutagenesis.

View Article and Find Full Text PDF