Biomimetic properties allow soft robots to complexly interact with the environment. As the bridge between the robot and the operating object, the gripping hand is an important organ for its connection with the outside world, which requires the ability to provide feedback from the grasped object, similar to the human sensory and nervous system. In this work, to cope with the difficulty of integrating complex sensing and communication systems into flexible soft grippers, we propose a GO/PI composite bilayer film-based gripper with two types of tactile sensors and a LC passive wireless transmission module to obtain the grip information and transmit it to the processor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
Soft robots based on bionics have attracted extensive attention in recent years. However, most of previous works focused on the motion of robots that were incapable of communication and perception. In this work, an untethered crawling robot is proposed with integration of motion, communication, and location based entirely on a flexible material, which is capable of being utilized as a sensing platform.
View Article and Find Full Text PDFWearable sensors are believed to be the most important part of the Internet of Things. In order to meet the application requirements, low-dimensional materials such as graphene and carbon nanotubes have been attempted to constitute wearable sensors with high performance. Our discussions in this review include the different low-dimensional material based sensors which are employed in wearable applications.
View Article and Find Full Text PDF