Publications by authors named "Chenggang Zhuang"

Advanced materials capable of withstanding extreme environments garner extensive interest in the development of next-generation advanced anti-corrosion electronics. Herein, we report that the surface passivation of printed copper conductors imparts corrosion resistance in high-temperature sulfurous environments while maintaining a high electrical conductivity of 4.42 MS m when subjected to a sulfur-containing environment at 350 °C for 12 h.

View Article and Find Full Text PDF

Advanced high-temperature materials, metals and ceramics, have been widely sought after for printed flexible electronics under extreme conditions. However, the thermal stability and electronic performance of these materials generally diminish under extreme environments. Additionally, printable electronics typically utilize nanoscale materials, which further exacerbate the problems with oxidation and corrosion at those extreme conditions.

View Article and Find Full Text PDF

In this work, MgB(2) whiskers were fabricated on a copper substrate by using the hybrid physical-chemical vapor deposition, which was one of the most effective ways to make high quality pure MgB(2) films, with the possible growth mechanism discussed. The whiskers are hexagonal and conelike and grow along the [0001] direction with a single-crystal structure. The onset transition temperature is approximately 39 K, which is among the best in the published nanostructure MgB(2) papers.

View Article and Find Full Text PDF

We have measured the normal state temperature dependence of the Hall effect and magnetoresistance in epitaxial MgB2 thin films with variable disorders characterized by the residual resistance ratio RRR ranging from 4.0 to 33.3.

View Article and Find Full Text PDF