Domain Generalization-based Medical Image Segmentation (DGMIS) aims to enhance the robustness of segmentation models on unseen target domains by learning from fully annotated data across multiple source domains. Despite the progress made by traditional DGMIS methods, they still face several challenges. First, most DGMIS approaches rely on static models to perform inference on unseen target domains, lacking the ability to dynamically adapt to samples from different target domains.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
IEEE Trans Pattern Anal Mach Intell
October 2024
IEEE Trans Pattern Anal Mach Intell
December 2024
Dense image prediction tasks demand features with strong category information and precise spatial boundary details at high resolution. To achieve this, modern hierarchical models often utilize feature fusion, directly adding upsampled coarse features from deep layers and high-resolution features from lower levels. In this paper, we observe rapid variations in fused feature values within objects, resulting in intra-category inconsistency due to disturbed high-frequency features.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
August 2024
Unsupervised domain adaptation (UDA) is attracting more attention from researchers for boosting the task-specific generalization on target domain. It focuses on addressing the domain shift between the labeled source domain and the unlabeled target domain. Recent biclassifier-based UDA models perform category-level alignment to reduce domain shift, and meanwhile, self-training is used for improving the discriminability of target instances.
View Article and Find Full Text PDFJ Imaging Inform Med
December 2024
IEEE Trans Image Process
May 2024
Depth images and thermal images contain the spatial geometry information and surface temperature information, which can act as complementary information for the RGB modality. However, the quality of the depth and thermal images is often unreliable in some challenging scenarios, which will result in the performance degradation of the two-modal based salient object detection (SOD). Meanwhile, some researchers pay attention to the triple-modal SOD task, namely the visible-depth-thermal (VDT) SOD, where they attempt to explore the complementarity of the RGB image, the depth image, and the thermal image.
View Article and Find Full Text PDFRGB-T salient object detection (SOD) has made significant progress in recent years. However, most existing works are based on heavy models, which are not applicable to mobile devices. Additionally, there is still room for improvement in the design of cross-modal feature fusion and cross-level feature fusion.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
June 2023
Scene text spotting is of great importance to the computer vision community due to its wide variety of applications. Recent methods attempt to introduce linguistic knowledge for challenging recognition rather than pure visual classification. However, how to effectively model the linguistic rules in end-to-end deep networks remains a research challenge.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) play an essential role in many biological cellular functions. However, it is still tedious and time-consuming to identify protein-protein interactions through traditional experimental methods. For this reason, it is imperative and necessary to develop a computational method for predicting PPIs efficiently.
View Article and Find Full Text PDFOptical remote sensing images (RSIs) have been widely used in many applications, and one of the interesting issues about optical RSIs is the salient object detection (SOD). However, due to diverse object types, various object scales, numerous object orientations, and cluttered backgrounds in optical RSIs, the performance of the existing SOD models often degrade largely. Meanwhile, cutting-edge SOD models targeting optical RSIs typically focus on suppressing cluttered backgrounds, while they neglect the importance of edge information which is crucial for obtaining precise saliency maps.
View Article and Find Full Text PDFIEEE Trans Image Process
May 2022
TV show captioning aims to generate a linguistic sentence based on the video and its associated subtitle. Compared to purely video-based captioning, the subtitle can provide the captioning model with useful semantic clues such as actors' sentiments and intentions. However, the effective use of subtitle is also very challenging, because it is the pieces of scrappy information and has semantic gap with visual modality.
View Article and Find Full Text PDFBackground: Mounting evidence shows that the neuropathological burdens manifest preference in affecting brain regions during the dynamic progression of Alzheimer's disease (AD). Since the distinct brain regions are physically wired by white matter fibers, it is reasonable to hypothesize the differential spreading pattern of neuropathological burdens may underlie the wiring topology, which can be characterized using neuroimaging and network science technologies.
Objective: To study the dynamic spreading patterns of neuropathological events in AD.
IEEE Trans Pattern Anal Mach Intell
January 2023
IEEE Trans Cybern
December 2022
Recent advances in 3-D sensors and 3-D modeling have led to the availability of massive amounts of 3-D data. It is too onerous and time consuming to manually label a plentiful of 3-D objects in real applications. In this article, we address this issue by transferring the knowledge from the existing labeled data (e.
View Article and Find Full Text PDFThe continuous emergence of drug-target interaction data provides an opportunity to construct a biological network for systematically discovering unknown interactions. However, this is challenging due to complex and heterogeneous correlations between drug and target. Here, we describe a heterogeneous hypergraph-based framework for drug-target interaction (HHDTI) predictions by modeling biological networks through a hypergraph, where each vertex represents a drug or a target and a hyperedge indicates existing similar interactions or associations between the connected vertices.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2021
RGB-D saliency detection is receiving more and more attention in recent years. There are many efforts have been devoted to this area, where most of them try to integrate the multi-modal information, i.e.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2022
Image demoireing is a multi-faceted image restoration task involving both moire pattern removal and color restoration. In this paper, we raise a general degradation model to describe an image contaminated by moire patterns, and propose a novel multi-scale bandpass convolutional neural network (MBCNN) for single image demoireing. For moire pattern removal, we propose a multi-block-size learnable bandpass filters (M-LBFs), based on a block-wise frequency domain transform, to learn the frequency domain priors of moire patterns.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2022
Real-time dense SLAM techniques aim to reconstruct the dense three-dimensional geometry of a scene in real time with an RGB or RGB-D sensor. An indoor scene is an important type of working environment for these techniques. The planar prior can be used in this scenario to improve the reconstruction quality, especially for large low-texture regions that commonly occur in an indoor scene.
View Article and Find Full Text PDFRecent developments in neuroimaging allow us to investigate the structural and functional connectivity between brain regions in vivo. Mounting evidence suggests that hub nodes play a central role in brain communication and neural integration. Such high centrality, however, makes hub nodes particularly susceptible to pathological network alterations and the identification of hub nodes from brain networks has attracted much attention in neuroimaging.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2022
IEEE Trans Image Process
June 2021
Effective 3D shape retrieval and recognition are challenging but important tasks in computer vision research field, which have attracted much attention in recent decades. Although recent progress has shown significant improvement of deep learning methods on 3D shape retrieval and recognition performance, it is still under investigated of how to jointly learn an optimal representation of 3D shapes considering their relationships. To tackle this issue, we propose a multi-scale representation learning method on hypergraph for 3D shape retrieval and recognition, called multi-scale hypergraph neural network (MHGNN).
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2022
Human brain is a complex yet economically organized system, where a small portion of critical hub regions support the majority of brain functions. The identification of common hub nodes in a population of networks is often simplified as a voting procedure on the set of identified hub nodes across individual brain networks, which ignores the intrinsic data geometry and partially lacks the reproducible findings in neuroscience. Hence, we propose a first-ever group-wise hub identification method to identify hub nodes that are common across a population of individual brain networks.
View Article and Find Full Text PDFIncremental Learning is a particular form of machine learning that enables a model to be modified incrementally, when new data becomes available. In this way, the model can adapt to the new data without the lengthy and time-consuming process required for complete model re-training. However, existing incremental learning methods face two significant problems: 1) noise in the classification sample data, 2) poor accuracy of modern classification algorithms when applied to modern classification problems.
View Article and Find Full Text PDF