A strong-coupling helical fiber needle (HFN) is proposed and demonstrated for the realization of bandwidth-enhanced broadband optical vortex beam (OVB) generation. The HFN is based on a single mode fiber and operates at the dispersion-turning-point (DTP) of the lowest radial order of the cladding mode (i.e.
View Article and Find Full Text PDFCurrently, the method of establishing the correspondence between the flame light field image and the temperature field by deep learning is widely used. Based on convolutional neural networks (CNNs), the reconstruction accuracy has been improved by increasing the depth of the network. However, as the depth of the network increases, it will lead to gradient explosion and network degradation.
View Article and Find Full Text PDFA new method enabling to provide an on-demand flat-top wideband orbital angular momentum (OAM) mode converter is proposed and experimentally demonstrated, which is based on utilization of a cladding-etched helical long-period fiber grating (CEHLPG). By appropriately selecting the grating period and precisely controlling the diameter of the CEHLPG in-situ, both the radial order and central wavelength of the flat-top band for the generated OAM mode can be flexibly tailored according to specific requirements. As typical examples, the first azimuthal order OAM modes with a flat-top bandwidth of 95 nm at -20 dB, a central operating wavelength of ∼1500 nm, and the radial-orders of 9, 8, 5, and 2, respectively, have been demonstrated consecutively.
View Article and Find Full Text PDF