Genetically encoded inhibitors of Ca1 channels that operate via C-terminus-mediated inhibition (CMI) have been actively pursued. Here, we advance the design of CMI peptides by proposing a membrane-anchoring tag that is sufficient to link the inhibitory modules to the target channel as well as chemical and optogenetic modes of system control. We designed and implemented the constitutive and inducible CMI modules with appropriate dynamic ranges for the short and long variants of Ca1.
View Article and Find Full Text PDFThe regulation of the cell membrane potential plays a crucial role in governing the transmembrane transport of various ions and cellular life processes. However, and on-demand modulation of cell membrane potential for ion channel regulation is challenging. Herein, we have constructed a supramolecular assembly system based on water-soluble cationic oligo(phenylenevinylene) (OPV) and cucurbit[7]uril (CB[7]).
View Article and Find Full Text PDFThe skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities.
View Article and Find Full Text PDFThe extracellular matrix (ECM) orchestrates cell behavior and tissue regeneration by modulating biochemical and mechanical signals. Manipulating cell-material interactions is crucial for leveraging biomaterials to regulate cell functions. Yet, integrating multiple cues in a single material remains a challenge.
View Article and Find Full Text PDFThe rarity of efficient tools with spatiotemporal resolution and biocompatibility capabilities remains a major challenge for further progress and application of signaling manipulation. Herein, biomimetic conjugated oligomeric nanoparticles (CM-CONs) were developed to precisely modulate blood glucose homeostasis via the two-pronged activation of calcium channels. Under near-infrared (NIR) laser irradiation, CM-CONs efficiently generate local heat and reactive oxygen species (ROS), thereby simultaneously activating thermosensitive transient receptor potential V1 (TRPV1) and ROS-sensitive transient receptor potential A1 (TRPA1) calcium channels in small intestinal endocrine cells.
View Article and Find Full Text PDFCell fate can be efficiently modulated by switching ion channels. However, the precise regulation of ion channels in cells, especially in specific organelles, remains challenging. Herein, biomimetic second near-infrared (NIR-II) responsive conjugated oligomer nanoparticles with dual-targeted properties are designed and prepared to modulate the ion channels of mitochondria to selectively kill malignant cells in vivo.
View Article and Find Full Text PDFBacterial infection poses an enormous threat to human life and health. The inability of drugs to be effectively delivered to the site of infection and the development of bacterial resistance make the treatment process more difficult. Herein, a stepwise targeted biomimetic nanoparticle (NPs@M-P) with inflammatory tendency and Gram-negative bacterial targeting was designed, which can achieve efficient antibacterial activity under near-infrared triggering.
View Article and Find Full Text PDFCells continuously sense external forces from their microenvironment, the extracellular matrix (ECM). In turn, they generate contractile forces, which stiffen and remodel this matrix. Although this bidirectional mechanical exchange is crucial for many cell functions, it remains poorly understood.
View Article and Find Full Text PDFThe combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable.
View Article and Find Full Text PDFPathogenic fungal infection is a major clinical threat because pathogenic fungi have developed resistant mechanisms to evade the innate immune response, especially interactions with macrophages. Herein, a strategy to activate immune responses of macrophages to fungi based on near-infrared (NIR) responsive conjugated polymer nanoparticles (CPNs-M) is reported for antifungal immunotherapy. Under NIR light irradiation, CPNs-M exposes β-glucan on the surface of fungal conidia by photothermal damage and drug released from CPNs-M.
View Article and Find Full Text PDFNeuroinflammation is one of the important manifestations of the amyloid β peptide (Aβ) protein-induced neurotoxic signaling pathway in which the aggregation of Aβ causes an increase in reactive oxygen species (ROS) and Ca concentration. Here, near-infrared (NIR) photothermal-responsive conjugated polymer nanoparticles were designed to regulate ROS and Ca signaling to alleviate neuroinflammation. Under 808 nm laser irradiation, the nanoparticles effectively penetrated the blood-brain barrier (BBB) and reduced the aggregation of Aβ and partially disaggregated the aggregates outside the cell, thereby reducing ROS content which downregulated the oxidative stress damage to cells.
View Article and Find Full Text PDFThe gated state of anion channels is involved in the regulation of proliferation and migration of tumors. Specific regulators are urgently needed for efficacious cancer ablation. For this purpose, it is essential to understand the molecular mechanisms of interaction between the regulators and anion channels and apply this knowledge to regulate anion channels.
View Article and Find Full Text PDFThe regulation of reactive oxygen species (ROS)-sensitive calcium (Ca) channels is of great significance in the treatment of tumors. Here, a simple ROS generation system is developed to activate ROS-sensitive ion channels for enhancing calcium-cascade-mediated tumor cell death under near-infrared (NIR) light irradiation. Upon irradiation with an 808 nm laser, a low-lethality amount of ROS facilitates plasmid transient potential receptor melastatin-2 (pTRPM2) gene release via cleavage of the Se-Se bonds, which contributed to enhancing the expression of TRPM2 in tumor cells.
View Article and Find Full Text PDFHepatocellular carcinoma development is closely related to the changes in tissue mechanics induced by excess collagen deposition and crosslinking, which leads to liver fibrosis and malignant progression. The role of matrix stiffness has been widely assessed using various linearly elastic materials. However, the liver, like many soft tissues, also exhibits nonlinear elasticity by strain-stiffening, allowing cells to mechanically interact with their micromilieus which has attracted much attention in cellular processes recently.
View Article and Find Full Text PDFCa overload is caused by the abnormal accumulation of Ca, which is a potential therapeutic strategy for inhibiting tumor growth. However, due to the limited intracellular Ca concentration, its anticancer effect is non-significant. Herein, near-infrared (NIR)-responsive nanoparticles NPs-PCa (DPPC-DSPE-PEG2000-NH@PDPP@CaO@DOX) were designed and prepared to achieve photothermal trigger of Ca release, thereby increasing intracellular Ca content.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activating therapy has received wide attention due to its capacity to precisely induce cancer cell apoptosis. However, drug resistance and the poor pharmacokinetic properties of TRAIL protein are obstacles in TRAIL-based therapy for cancer. Herein, a strategy is developed to remotely control and specifically initiate TRAIL-mediated apoptotic signaling to promote TRAIL-resistant cancer cell apoptosis using near-infrared (NIR) light-absorbing conjugated polymer nanoparticles (CPNs).
View Article and Find Full Text PDFMild-temperature photothermal therapy (PTT) is being extensively explored because it causes less injury to normal cells. However, the effect of mild-temperature PTT is decreased because of heat shock protein (HSP) overexpression. To solve this problem, we designed functional conjugated polymer nanoparticles (CPNs-G) that enhance the mild-temperature photothermal effect.
View Article and Find Full Text PDFThe development of biomimetic extracellular matrix (ECM) with fibrous structure and complex nonlinear mechanics has been attracting intensive attention over the past decades both in material science and tissue engineering. Polyisocyanopeptide (PIC) hydrogels are a class of fully synthetic materials that can mimic biogels, such as fibrin and collagen, in nearly all aspects, particularly the micron-sized gel network and the strong strain-stiffening behavior in the biological regime. Here, a biomimetic PIC/hydroxyapatite (HA) hybrid composite through an enzymatic biomineralization strategy is constructed.
View Article and Find Full Text PDFCancer cells survive by relying on oxidative stress defense against the accumulation of reactive oxygen species (ROS) during tumor formation. ROS-sensitive TRPA1 ion channels are overexpressed in breast cancer cells and induce a large influx of Ca which upregulates the anti-apoptotic pathway to lead breast cancer cells to produce oxidative stress defense and enhance the resistance to ROS related chemotherapy. Targeting and inhibiting the TRPA1 ion channels are critical for breaking down the oxidative stress defense system and overcoming cellular resistance.
View Article and Find Full Text PDFFabricating antibacterial hydrogels with antimicrobial drugs and synthetic biocompatible biomimetic hydrogels is a promising strategy for practical medical applications. Here, we report a bicomponent hydrogel composed of a biomimetic polyisocyanopetide (PIC) hydrogel and a photodynamic antibacterial membrane-intercalating conjugated oligoelectrolyte (COE). The aggregation behavior and aggregate size of the COEs in water can be regulated using the PIC hydrogel, which could induce COEs with higher reactive oxygen species (ROS) production efficiency and increased association of COEs toward bacteria, therefore enhancing the antibacterial efficiency.
View Article and Find Full Text PDFGlyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA).
View Article and Find Full Text PDFExcess aggregation of amyloid β peptide (Aβ) is a fatal cause of Alzheimer's disease (AD), which leads to physiological toxicity. Inhibiting and disaggregating the Aβ aggregates is an effective strategy to reduce physiological toxicity in neuronal cells. Herein, conjugated polymer-based thermoresponsive micelles (CPMs) were designed with an efficient thermoresponsive surface and a reactive-oxygen-species (ROS)-generating core.
View Article and Find Full Text PDFHerein, we have developed a composite antibacterial hydrogel with photodynamic therapy (PDT) and photothermal therapy (PTT) antibacterial capabilities, triggered by white light and NIR light irradiation. A water-insoluble conjugated polymer (PDPP) with photothermal ability was prepared into nanoparticles by the nanoprecipitation method, and the cell-penetrating peptide TAT was grafted on the surface of the nanoparticles. Based on our previous work that developed a hybrid hydrogel with an enhanced PDT effect from polyisocyanide (PIC) hydrogel and cationic conjugated polythiophene (PMNT), PDPP nanoparticles (CPNs-TAT) with photothermal ability are introduced to realize the synergistic antibacterial effect of PDT and PTT.
View Article and Find Full Text PDFTo overcome the adverse effects of conventional chemotherapy for cancers, various nanoparticles based drug delivery systems have been developed. However, nanoparticles delivering drugs directly to kill tumor cells still faced with challenges, because tumors possessed adopt complex mechanism to resist damages, which compromised the therapeutic efficacy. TMEM16A/CaCCs (Calcium activates chloride channels) has been identified to be overexpressed in lung adenocarcinoma which can serve as a novel tumor specific drug target in our previous work.
View Article and Find Full Text PDF