Owing to their high sensitivity across a wide stress range, mechanical reliability, and rapid response time, flexible polymer foam piezoresistive sensors have been extensively used in various fields. The reliable application of these sensors under harsh environments, however, is severely limited by structural devastation and poor interfacial bonding between polymers and conductive nanoparticles. To address the above issues, robust MXene/CNT nanocoatings on the foam surface, where the chemical assembly of MXene nanosheets and the physical anchoring of CNTs lead to strong interfacial bonding, are designed and described, which endows foams with structural reliability and unexpected multi-functionalities without compromising their instinct properties.
View Article and Find Full Text PDFSilicone rubber (SR), as one kind of highly valuable rubber material, has been widely used in many fields, e.g., construction, transportation, the electronics industry, automobiles, aviation, and biology, owing to its attractive properties, including high- and low-temperature resistance, weathering resistance, chemical stability, and electrical isolation, as well as transparency.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
Intumescent fire-retardant coatings, which feature thinner layers and good decorative effects while significantly reducing heat transfer and air dispersion capabilities, are highly attractive for fire safety applications due to their effective prevention of material combustion and protection of materials. Particularly, the worldwide demand for improved environmental protection requirements has given rise to the production of waterborne intumescent fire-retardant polymer composite coatings, which are comparable to or provide more advantages than solvent-based intumescent fire-retardant polymer composite coatings in terms of low cost, reduced odor, and minimal environmental and health hazards. However, there is still a lack of a comprehensive and in-depth overview of waterborne intumescent fire-retardant polymer composite coatings.
View Article and Find Full Text PDFRecent years have witnessed the explosive development of highly sensitive smart sensors based on conductive polymer foam materials. However, the design and development of multifunctional polymeric foam composites as smart sensors applied in complex solvent and oil environments remain a critical challenge. Herein, we design and synthesize vinyl-terminated polytrifluoropropylmethylsiloxane through anionic ring-opening polymerization to fabricate fluorosilicone rubber foam (FSiRF) materials with nanoscale wrinkled surfaces and reactive Si-H groups via a green and rapid chemical foaming strategy.
View Article and Find Full Text PDFMXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g.
View Article and Find Full Text PDFHistorically, fire disasters have killed numerous human lives, and caused tremendous property loss. Fire warning systems play a vital role in predicting fire risks, and are strongly desired to effectively prevent the disaster occurrence and significantly reduce the loss. Among the developed fire warning systems, thermoelectrics (TEs) and thermocells (TECs)-based fire warning materials are extremely important and indispensable in future research, owing to their unique capability of direct conversion between heat and electricity.
View Article and Find Full Text PDFAn abundance of early warning graphene-based nano-materials and sensors have been developed to avoid and prevent the critical fire risk of combustible materials. However, there are still some limitations that should be addressed, such as the black color, high-cost and single fire warning response of graphene-based fire warning materials. Herein, we report an unexpected montmorillonite (MMT)-based intelligent fire warning materials that have excellent fire cyclic warning performance and reliable flame retardancy.
View Article and Find Full Text PDFA graphene oxide (GO)-based smart fire alarm sensor (FAS) has gained rapidly increasing research interest in fire safety fields recently. However, it still remains a huge challenge to obtain desirable GO-based FAS materials with integrated performances of mechanical flexibility/robustness, harsh environment-tolerance, high-temperature resistance, and reliable fire warning and protection. In this work, based on bionic design, the supermolecule melamine diborate (M·2B) was combined with GO nanosheets to form supramolecular cross-linking nanosystems, and the corresponding GO-M·2B (GO/MB) hybrid papers with a nacre-like micro/nano structure were successfully fabricated a gel-dry method.
View Article and Find Full Text PDFA novel and hierarchical hybrid composite (MnO@CHS@SA@Ni) was synthesized utilizing manganese dioxide (MnO) nanosheets as the core structure, self-assembly chitosan (CHS), sodium alginate (SA) and nickel species (Ni) as surface layers, and it was further incorporated into an epoxy matrix for achieving fire hazard suppression via surface self-assembly technology. Herein, the resultant hybrid epoxy composite possessed an exceptional nano-barrier and synergistic charring effect to aid the formation of a compact layered structure that enhanced its fire-resistive effectiveness. As a result, the addition of only 2 wt% MnO@CHS@SA@Ni hybrids led to a dramatic reduction in the peak heat release rate and total heat release values (by ca.
View Article and Find Full Text PDFSmart fire alarm sensor (FAS) materials with mechanically robust, excellent flame retardancy as well as ultra-sensitive temperature-responsive capability are highly attractive platforms for fire safety application. However, most reported FAS materials can hardly provide sensitive, continuous and reliable alarm signal output due to their undesirable temperature-responsive, flame-resistant and mechanical performances. To overcome these hurdles, herein, we utilize the multi-amino molecule, named HCPA, that can serve as triple-roles including cross-linker, fire retardant and reducing agent for decorating graphene oxide (GO) sheets and obtaining the GO/HCPA hybrid networks.
View Article and Find Full Text PDF