Publications by authors named "Chengfang Pang"

A new super-branched amylopectin with longer exterior chains was produced from normal maize starch by modification with branching enzyme followed by 4-α-glucanotransferase, and applied for co-entrapment of a curcumin-loaded emulsion in alginate beads. The network structure of the gel beads was obtained with Ca-cross-linked alginate and a modest load of retrograded starch. The dual enzyme modified starch contained more and longer α-1,6-linked branch chains than single enzyme modified and unmodified starches and showed superior resistance to digestive enzymes.

View Article and Find Full Text PDF

Introduction: The antibacterial activity of graphene oxide (GO) has been widely explored and tested against various pathogenic bacterial strains. Although antimicrobial activity of GO against planktonic bacterial cells was demonstrated, its bacteriostatic and bactericidal effect alone is not sufficient to damage sedentary and well protected bacterial cells inside biofilms. Thus, to be utilized as an effective antibacterial agent, it is necessary to improve the antibacterial activity of GO either by integration with other nanomaterials or by attachment of antimicrobial agents.

View Article and Find Full Text PDF

The tumor suppressor gene phosphatase and tensin homolog (PTEN) in PI3K/Akt/mTOR pathway is essential in inhibiting tumor growth and metastasis. However, whether the mutation of PTEN gene could induce tumorigenesis and impact the treatment of gastric cancer is still unclear. The purpose of the study was to investigate the combined treatment of gastric tumorigenesis using Rapamycin and Fluorouracil (5-Fu) through interfering with the Akt/mTOR pathway in a mouse model with PTEN conditional deletion.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are constituents of many consumer products, but the future of their production depends on ensuring safety. The stability of AgNPs in various physiological solutions and aging in storage may affect the accuracy of predicted nanoparticle toxicity. The goal of this study was to simulate the transformation of AgNPs in different media representatives to the life cycle in the environment and to identify their toxicity to Hepa1c1c7 cells in a long-term aging process.

View Article and Find Full Text PDF

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins, is a persistent and ubiquitous environmental contaminant. Although the immunotoxic effects of TCDD have been reported, the mechanisms underlying these effects are still unclear. In this study, we have determined the toxic effects of TCDD on thymocytes and splenic T cells with in vitro cell culture systems.

View Article and Find Full Text PDF

Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus, Klebsiella pneumoniae or Enterococcus faecalis.

View Article and Find Full Text PDF
Article Synopsis
  • The use of emerging technologies like nanomaterials presents both potential benefits and risks, with significant uncertainty surrounding their environmental behavior and impacts on health.
  • Traditional risk assessment methods may fall short due to the inherent uncertainties associated with these technologies, as they often rely on deterministic values.
  • A probabilistic approach was applied in a case study regarding titanium dioxide nanoparticles, revealing that only one of the exposure scenarios posed a significant risk, highlighting the importance of considering various factors and potential outcomes in risk assessment.
View Article and Find Full Text PDF

With the development of nanotechnology, gold (Au) and graphene oxide (GO) nanoparticles have been widely used in various fields, resulting in an increased release of these particles into the environment. The released nanoparticles may eventually accumulate in sediment, causing possible ecotoxicological effects to benthic invertebrates. However, the impact of Au-NPs and GO-NPs on the cosmopolitan oligochaete, Tubifex tubifex, in sediment exposure is not known.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) have received greater attention in recent years due to an increase in the frequency of outbreaks and a growing potential for blooms to exact considerable economic losses and negatively impact ecosystem health. Human activity has been shown to intensify HAB outbreaks through increased eutrophication, elevated local air and water temperatures, disturbance of the thermal stratification of lakes, and modification of local hydrology. With the advent of new remediation technologies and a better understanding of the ecological factors affecting HABs, mitigating the adverse effects of HABs has become more feasible than ever before but still requires balancing mitigation efficiency, environmental impacts, costs, and stakeholder needs.

View Article and Find Full Text PDF

Silver nanoparticles (n-Ag) are widely used in consumer products and many medical applications because of their unique antibacterial properties. Their use is raising concern about potential human exposures and health effects. Therefore, it is informative to assess the potential human health risks of n-Ag in order to ensure that nanotechnology-based consumer products are deployed in a safe and sustainable way.

View Article and Find Full Text PDF

Background: The enormous physicochemical and structural diversity of metal oxide nanoparticles (MeONPs) poses significant challenges to the testing of their biological uptake, biodistribution, and effects that can be used to develop understanding of key nano-bio modes of action. This has generated considerable uncertainties in the assessment of their human health and environmental risks and has raised concerns about the adequacy of their regulation. In order to surpass the extremely resource intensive case-by-case testing, intelligent strategies combining testing methods and non-testing predictive modeling should be developed.

View Article and Find Full Text PDF

With the advance in material science and the need to diversify market applications, silver nanoparticles (AgNPs) are modified by different surface coatings. However, how these surface modifications influence the effects of AgNPs on human health is still largely unknown. We have evaluated the uptake, toxicity and pharmacokinetics of AgNPs coated with citrate, polyethylene glycol, polyvinyl pyrolidone and branched polyethyleneimine (Citrate AgNPs, PEG AgNPs, PVP AgNPs and BPEI AgNPs, respectively).

View Article and Find Full Text PDF

The present study examined the relative importance of copper (aqueous Cu and CuO particles of different sizes) added to sediment to determine the bioaccumulation, toxicokinetics, and effects in the deposit feeder Potamopyrgus antipodarum. In experiment 1, the bioaccumulation of Cu (240 µg Cu/g dry wt of sediment) added as aqueous Cu (CuCl2 ), nano- (6 nm, 100 nm), or micro- (<5 µm) CuO particles in adult snails was measured. In experiment 2, a more comprehensive analysis of the toxicokinetics of Cu (aqueous Cu, 6 nm, or 100 nm) was conducted.

View Article and Find Full Text PDF

Increasing use of engineered nanoparticles (NPs) is likely to result in release of these particles to the aquatic environment where the NPs may eventually accumulate in sediment. However, little is known about the potential ecotoxicity of sediment-associated engineered NPs. We here consider the case of metal oxide NPs using CuO to understand if the effects of NPs differ from micron-sized particles of CuO and aqueous Cu (CuCl₂).

View Article and Find Full Text PDF