Publications by authors named "Chengdong Xiong"

Infected bone defects are one of the most challenging problems in the treatment of bone defects due to the high antibiotic failure rate and the lack of ideal bone grafts. In this paper, inspired by clinical bone cement filling treatment, α-c phosphate (α-TCP) with self-curing properties is composited with β-tricalcium phosphate (β-TCP) and constructed a bionic cancellous bone scaffolding system α/β-tricalcium phosphate (α/β-TCP) by low-temperature 3D printing, and gelatin is preserved inside the scaffolds as an organic phase, and later loaded with a metal-polyphenol network structure of tea polyphenol-magnesium (TP-Mg) nanoparticles. The scaffolds mimic the structure and components of cancellous bone with high mechanical strength (>100 MPa) based on α-TCP self-curing properties through low-temperature 3D printing.

View Article and Find Full Text PDF

Osteomyelitis is a devastating disease caused by microbial infection in deep bone tissue. Its high recurrence rate and impaired restoration of bone deficiencies are major challenges in treatment. Microbes have evolved numerous mechanisms to effectively evade host intrinsic and adaptive immune attacks to persistently localize in the host, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants (SCVs).

View Article and Find Full Text PDF

The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance.

View Article and Find Full Text PDF

Desired orthopedic implant materials must have a good biological activity and possess appropriate mechanical property that correspond to those of human bone. Although polyetheretherketone (PEEK) has displayed a promising application prospect in musculoskeletal and dentistry reconstruction thanks to its non-biodegradability and good biocompatibility in the body, the poor osseointegration and insufficient mechanical strength have significantly limited its application in the repair of load-bearing bones and surgical operations. In this study, carbon nanotubes (CNT)/calcium silicate (CS)/polyetheretherketone ternary composites were fabricated for the first time.

View Article and Find Full Text PDF

Objectives: 3D-printing scaffold with specifically customized and biomimetic structures gained significant recent attention in tissue engineering for the regeneration of damaged bone tissues. However, constructed scaffolds that simultaneously promote bone regeneration and in situ inhibit bacterial proliferation remains a great challenge. This study aimed to design a bone repair scaffold with in situ antibacterial functions.

View Article and Find Full Text PDF

Rapid formation of innovative, inexpensive, personalized, and quickly reproducible artery bioresorbable stents (BRSs) is significantly important for treating dangerous and sometimes deadly cerebrovascular disorders. It is greatly challenging to give BRSs excellent mechanical properties, biocompatibility, and bioabsorbability. The current BRSs, which are mostly fabricated from poly-l-lactide (PLLA), are usually applied to coronary revascularization but may not be suitable for cerebrovascular revascularization.

View Article and Find Full Text PDF

Biocompatible polymers and drug delivery vehicles have been driving development in bone regeneration. However, most bone scaffolds show poor degradation and proliferation. In this study, a composite microsphere scaffold was prepared using vancomycin hydrochloride(VH)-loaded polytrimethylene carbonate(PTMC) microsphere (PTMC-VH).

View Article and Find Full Text PDF

Biocompatible polymers and drug-delivery scaffolds have driven development in bone regeneration. In this study, we fabricated a chitosan (CS)-coated polytrimethylene carbonate (PTMC)/polylactic acid (PLLA)/oleic acid-modified hydroxyapatite (OA-HA)/vancomycin hydrochloride (VH) microsphere scaffold for drug release with excellent biocompatibility. The incorporation of PLLA, OA-HA, and VH into PTMC microspheres not only slowed the biodegradability of the scaffold but also enhanced its mechanical properties and surface properties.

View Article and Find Full Text PDF

Ureteral stents have been widely used as biomedical devices to treat some urological diseases for several decades. However, the encrustation complications hamper the long-time clinical use of the ureteral stents. In this work, a new type of biodegradable material for the ureteral stents, methoxypoly(ethylene glycol)-block-poly(L-lactide-ran-Ɛ-caprolactone) (mPEG-PLACL), is evaluated to overcome this problem.

View Article and Find Full Text PDF

Poly (lactic acid) (PLA), although extensively used as biomedical materials, has the distinct disadvantage of producing acidic byproducts which can lead to tissue inflammatory reactions and clinic failure. Here we presented a combination of Poly (lactic acid-co-trimethylene carbonate) and natural polymer chitosan, improving its compression resilience and reducing its acidic byproducts. In this case, we developed 3D scaffolds using solvent/nonsolvent technique sintered PLA-TMC and PLA-TMC/Chitosan microspheres with selected particle size (355-500 μm).

View Article and Find Full Text PDF

Graphene oxide (GO) was employed for the preparation of GO-zinc oxide (ZnO). The hydroxyl group on the surface was exploited to trigger the l-lactide ring-opening polymerization. A composite material with poly(l-lactide) (PLLA) chains grafted to the GO-ZnO surface, GO-ZnO-PLLA, was prepared.

View Article and Find Full Text PDF

In this paper, the hydroxyl groups on the surface of graphene oxide (GO) were used to initiate the ring-opening polymerization of a lactic acid -carboxyanhydride. GO grafted with poly (l-lactic acid) molecular chains (GO--PLLA) was prepared. Lactic acid -carboxyanhydride has a higher polymerization activity under mild polymerization conditions.

View Article and Find Full Text PDF

Desired bone repair material must have excellent biocompatibility and high bioactivity. Moreover, mechanical properties of biomaterial should be equivalent to those of human bones. For developing an alternative biocomposite for load-bearing orthopedic application, combination of bioactive fillers with polymer matrix is a feasible approach.

View Article and Find Full Text PDF

It is a promising and challenging to achieve an ideal poly (lactic-co-glycolic) (PLGA)-based composite. In this paper, bamboo fiber (BF) was firstly designed to incorporate into nano-hydroxyapatite/PLGA (n-HA/PLGA) composite, and a series of novel biodegradable BF/n-HA/PLGA ternary composites with different BF amounts (0wt%, 5wt%, 10wt% and 20wt%) were prepared by solution mixing method. The effect of BF content on the crystallization behavior, interface structure and mechanical property of BF/n-HA/PLGA ternary composite was investigated by X-ray diffraction pattern (XRD), differential scanning calorimeter (DSC) and scanning electron microscope (SEM), comparing with pure PLGA and n-HA/PLGA composite.

View Article and Find Full Text PDF

In this study, bamboo fiber was first designed to incorporate into nano-hydroxyapatite/poly(lactic-co-glycolic) to obtain a new composite scaffold of bamboo fiber/nano-hydroxyapatite/poly(lactic-co- glycolic) (BF/n-HA/PLGA) by freeze-drying method. The effect of their components and some factors consisting of different freeze temperatures, concentrations, and pore-forming agents on the porous morphology, porosity, and compressive properties of the scaffold were investigated by scanning electron microscope, modified liquid displacement method, and electromechanical universal testing machine. The results indicated that the 5% BF/30% n-HA/PLGA composite scaffold, prepared with 5% (w/v) high concentration and frozen at -20 °C without pore-forming agent, had the best ideal porous structure and porosity as well as compressive properties, which far exceed those of n-HA/PLGA composite scaffold.

View Article and Find Full Text PDF

To obtain ideal nano-hydroxyapatite(n-HA) filler for poly(lactide-co-glycolide) (PLGA), a new surface-grafting with the assist of citric acid for nano-hydroxyapatite (n-HA) was designed, and the effect of n-HA surface-grafted with or without citric acid on in vitro degradation behavior and cells viability was studied by the experiments of soaking in simulated body fluid (SBF) and incubating with human osteoblast-like cells (MG-63). The change of pH value, tensile strength reduction, the surface deposits, cells attachment and proliferation of samples during the soaking and incubation were investigated by means of pH meter, electromechanical universal tester, scanning electron microscope (SEM) coupled with energy-dispersive spectro-scopy (EDS), fluorescence microscope and MTT method. The results showed that the introduction of citric acid not only delayed the strength reduction during the degradation by inhibiting the detachment of n-HA from PLGA, but also endowed it better cell attachment and proliferation, suggesting that the n-HA surface-grafted with the assist of citric acid was an important bioactive ceramic fillers for PLGA used as bone materials.

View Article and Find Full Text PDF

Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface.

View Article and Find Full Text PDF

It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment.

View Article and Find Full Text PDF

Fibroblast plays an important role in the occurrence of postoperative tissue adhesion; materials that have particular "cell-material" interactions to inhibit proliferation of fibroblast will be excellent potential adhesion barriers. In the current study, we synthesized copolymers of p-dioxanone and L-phenylalanine (PDPA) and evaluated the mechanism of its particular inhibition effect on L929 fibroblast proliferation when used as a culture surface. PDPA electrospun membranes could induce apoptosis of L929 fibroblasts.

View Article and Find Full Text PDF

Control of cellular responses is crucial for the use of electrospun membranes in biomedical applications, including tissue engineering or biomedical devices. However, it is still unclear whether adhesion and proliferation of fibroblasts is stimulated or inhibited on polyethylene glycol (PEG)-modified electrospun membranes. In this study, poly(L-lactide-co-glycolide) (PLLGA)-PEG copolymer and pure PEG were blended with PLLGA, and then electrospun onto nonwoven membranes.

View Article and Find Full Text PDF

Long-term stable (>2 years) hydrocolloids of hydroxyapatite (HA) were synthesized via a low-temperature (18-50 °C) reaction of aqueous ammonium phosphate with calcium nitrate in the presence of citrate ions, followed by an aging process at high temperature (80-99 °C) for 4 h. Changing the reaction and/or aging temperature seldom yielded stable HA hydrocolloids. The as-prepared hydrocolloids were desalinated through ultrafiltration where their average particle size gradually decreased, bottomed out at 100-400 μS/cm, and sharply increased in parallel with a decrease in solution conductivity.

View Article and Find Full Text PDF

This study was designed to assess the effect of implantation site and environment on early in vivo degradation behaviors of poly(L-lactide) (PLLA) and poly(L-lactide-co-glycolide) (PLGA) copolymer. The rods were implanted at two sites in each of 24 New Zealand White rabbits. The first site was within the suprapatellar bursa of the joint cavities (JC) and the second site was in the opposite condyles of femurs (CF).

View Article and Find Full Text PDF

A non-toxic PEG-analogue designed with polyester backbone and oligo(ethylene glycol) pendant chains combines well-defined reversible thermosensitivity with controlled bio-degradation and anti-immunogeneity properties.

View Article and Find Full Text PDF

In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR), transmission electron microscope(TEM), scanning electron microscope(SEM), universal material testing machine and phosphate buffer solution (PBS) soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs) culture experiment in vitro and a short period implantation study in vivo.

View Article and Find Full Text PDF

The aim of this study was to investigate the potential of poly(ethylene glycol-co-lactide) (PELA tri-block with a segmental sequence of PLA-PEG-PLA) electrospun membranes as drug-delivery vehicles using metronidazole as a model drug. PELA membranes with smooth surfaces and no bead defects were electrospun from polymer solutions containing 20% (w/v) PELA in 8:2 N,N-dimethyl formamide (DMF)/acetone. The morphology of the drug-loaded electrospun membranes was influenced by electrospinning parameters such as the flow rate and voltages during preparation.

View Article and Find Full Text PDF