Introduction: The prognostic value of 18F-FDG PET/CT metabolic parameters, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG), in diffuse large B-cell lymphoma (DLBCL) remains inadequately explored. This study aims to assess the correlation between these parameters and patient outcomes.
Methods: A cohort of 156 DLBCL patients underwent 18F-FDG PET/CT imaging at baseline and after 3-4 cycles of R-CHOP or CHOP-like regimen.
Traumatic spinal cord injury (SCI) represents a complex neuropathological challenge that significantly impacts the well-being of affected individuals. The quest for efficacious antioxidant and anti-inflammatory therapies is both a compelling necessity and a formidable challenge. Here, in this work, the innovative synthesis of electron-rich Ru clusters on non-stoichiometric copper hydroxide that contain oxygen vacancy defects (Ru/def-Cu(OH)), which can function as a biocatalytic reactive oxygen species (ROS) scavenger for efficiently suppressing the inflammatory cascade reactions and modulating the endogenous microenvironments in SCI, is introduced.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2024
The vascular and lymphatic systems are integral to maintaining skeletal homeostasis and responding to pathological conditions in bone and joint tissues. This review explores the interplay between blood vessels and lymphatic vessels in bones and joints, focusing on their roles in homeostasis, regeneration, and disease progression. Type H blood vessels, characterized by high expression of CD31 and endomucin, are crucial for coupling angiogenesis with osteogenesis, thus supporting bone homeostasis and repair.
View Article and Find Full Text PDFMetformin has shown outstanding anti-inflammatory and osteogenic abilities. Mesenchymal stem cell-derived extracellular vesicles (EVs) reveal promising therapeutic potency by carrying various biomolecules. This study explored the effects of metformin on the therapeutic potential of EVs derived from human periodontal ligament stem cells (PDLSCs) for periodontitis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
July 2024
Studies on odontogenesis are of great importance to treat dental abnormalities and tooth loss. However, the odontogenesis process was poorly studied in humans, especially at the early developmental stages. Here, we combined RNA sequencing (RNA-seq) with Laser-capture microdissection (LCM) to establish a spatiotemporal transcriptomic investigation for human deciduous tooth germs at the crucial developmental stage to offer new perspectives to understand tooth development and instruct tooth regeneration.
View Article and Find Full Text PDFImproving the regenerative ability of senescent stem cells is a critical issue in combating aging. The destiny and function of senescent stem cells are controlled by the niche, including the physical architecture of the surface of the extracellular matrix (ECM). In this study, we explored the functions of TiO nanotube topography on mesenchymal stem cells (MSCs) under senescence, as well as its mechanical effects on senescence.
View Article and Find Full Text PDFBecause multiple myeloma (MM) poses a formidable therapeutic challenge despite recent progress, exploring novel targets is crucial. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) emerges as a promising paracaspase with druggable potential, especially unexplored in MM. Our study provided compelling evidence demonstrating a statistically significant elevation of MALT1 expression in human primary MM cells.
View Article and Find Full Text PDFShanghai Kou Qiang Yi Xue
December 2023
Background: Diabetic chronic wounds present a formidable challenge in clinical management, lacking effective treatment options. Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for tissue repair and regeneration. However, transplanted MSCs often undergo rapid apoptosis, giving rise to heterogeneous extracellular vesicles (EVs), including apoptotic bodies (apoBDs) and apoptotic small extracellular vesicles (apoSEVs).
View Article and Find Full Text PDFGenomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth.
View Article and Find Full Text PDFWe investigated the functional mechanism of long non-coding small nucleolar host gene 17 (SNHG17) in diffuse large B-cell lymphoma (DLBCL). lncRNAs related to the prognosis of patients with DLBCL were screened to analyze long non-coding small nucleolar host gene 17 (SNHG17) expression in DLBCL and normal tissues, and a nomogram established for predicting DLBCL prognosis. SNHG17 expression in B-cell lymphoma cells was detected using qPCR.
View Article and Find Full Text PDFIdentification of cues originating from skeletal muscle that govern bone formation is essential for understanding the crosstalk between muscle and bone and for developing therapies for degenerative bone diseases. Here, we identified that skeletal muscle secreted multiple extracellular vesicles (Mu-EVs). These Mu-EVs traveled through the bloodstream to reach bone, where they were phagocytized by bone marrow mesenchymal stem/stromal cells (BMSCs).
View Article and Find Full Text PDFComb Chem High Throughput Screen
July 2024
UV-B is an important light condition for inducing anthocyanin synthesis in plants. Plants have corresponding photoreceptors such as UV RESISTANCE LOCUS8 (UVR8) and transduce light signals to the nucleus, which regulate the expression of structural and regulatory genes for anthocyanin synthesis through members such as ELONGATED HYPOCOTYL 5 (HY5), thereby increasing or decreasing anthocyanin accumulation. At the same time, excessive UV-B irradiation (artificial light experiments or extreme environmental conditions) is a light stress for plants, which can damage plants and cause DNA damage or even cell death and other adverse effects.
View Article and Find Full Text PDFCancer immunotherapy, including the inhibition of immune checkpoints, improves the tumor immune microenvironment and is an effective tool for cancer therapy. More effective and alternative inhibitory targets are critical for successful immune checkpoint blockade therapy. The interaction of the immunomodulatory ligand B7 family with corresponding receptors induces or inhibits T cell responses by sending co-stimulatory and co-inhibitory signals respectively.
View Article and Find Full Text PDFBackground: In normal cells, homologous recombination (HR) is tightly regulated and plays an important role in the maintenance of genomic integrity and stability through precise repair of DNA damage. RAD51 is a recombinase that mediates homologous base pairing and strand exchange during DNA repair by HR. Our previous data in multiple myeloma and esophageal adenocarcinoma (EAC) show that dysregulated HR mediates genomic instability.
View Article and Find Full Text PDFGlycosylation change is one of the landmark events of tumor occurrence and development, and tumor cells may be inhibited by regulating the aberrant expression of glycosyltransferases. Currently, fucosyltransferase VI (FUT6), which is involved in the synthesis of α-1, 3 fucosyl bond, has been detected to be closely associated with multiple tumors, but its function and mechanism in head and neck squamous cell carcinoma (HNSCC) still need further research. In this study, FUT6 knockdown and overexpression strategies were used to investigate the effects of FUT6 on cell proliferation, migration, and invasion, as well as the growth and metastasis of HNSCC in a xenografts mouse model.
View Article and Find Full Text PDFThe interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited.
View Article and Find Full Text PDFComb Chem High Throughput Screen
March 2023
Background: Although head and neck squamous cell carcinoma (HNSCC) is a common malignancy, the molecular biology landscape underlying its occurrence and development remains poorly understood. The family with sequence similarity (FAM) 3 family of proteins includes four family members, namely FAM3A, FAM3B, FAM3C and FAM3D. In particular, FAM3C has been previously reported to be closely associated with various human malignancies.
View Article and Find Full Text PDFEpithelial mesenchymal transition (EMT) is a contributing factor in remodeling events of chronic obstructive pulmonary disease (COPD). Hydrogen sulfide (HS) has been implicated in the pathogenesis of COPD, but the effect of HS in regulating EMT and the underlying mechanisms is not clear. In this study, we assessed endoplasmic reticulum (ER) stress markers, EMT markers and associated signal molecules in rat lungs, bronchial epithelial cells, and human peripheral lung tissues to investigate the effect of HS in regulating EMT and the underlying mechanisms.
View Article and Find Full Text PDF