Publications by authors named "Chengcheng Han"

With the development of brain-computer interface industry, large amounts of related applications have entered people's vision. BCI applications based on steady-state visual evoked potentials (SSVEP) are widely used because they do not require pre-training and have high information transmission rates. However, in the actual use of SSVEP stimulus paradigm, the subjects will produce visual fatigue with the use, and fatigue will affect the transmission efficiency.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on improving wind energy harvesting through a new rotating structure triboelectric-electromagnetic hybrid nanogenerator, aimed at addressing challenges in efficient energy collection.
  • - Key innovations include optimizing the magnetic circuit design to enhance power generation with a simplified setup, and employing a triboelectric design that uses soft contact friction to boost performance and durability.
  • - Experimental results showed that the device effectively powered a Bluetooth sensor at 10 m/s wind speed, indicating its practical applications in real-world environmental systems like traffic signals.
View Article and Find Full Text PDF

Introduction: Sensorimotor synchronization (SMS) is the human ability to align body movement rhythms with external rhythmic stimuli. While the effects of rhythmic stimuli containing only temporal information on SMS have been extensively studied, less is known about how spatial information affects SMS performance. This study investigates the neural mechanisms underlying SMS with rhythmic stimuli that include both temporal and spatial information, providing insights into the influence of these factors across different sensory modalities.

View Article and Find Full Text PDF

Organic solar cells, as a cutting-edge sustainable renewable energy technology, possess a myriad of potential applications, while the bottleneck problem of less than 20% efficiency limits the further development. Simultaneously achieving an ordered molecular arrangement, appropriate crystalline domain size, and reduced nonradiative recombination poses a significant challenge and is pivotal for overcoming efficiency limitations. This study employs a dual strategy involving the development of a novel acceptor and ternary blending to address this challenge.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: In ancient times, ginseng was used for hyperuricemia treatment as described in the classic traditional Chinese medical text Shang Han Lun. Recent studies have shown that common ginsenosides and rare ginsenosides (RGS) are the main active compounds in ginseng. RGS have higher activity and are less studied in the treatment of hyperuricemia.

View Article and Find Full Text PDF

In recent years, magnetic resonance imaging has been widely used in the medical field. During the scan, if the human body moves, then there will be motion artifacts on the scan image, which will interfere with the diagnosis and only be found after the end of the scan sequence, resulting in a waste of manpower and resources. However, there is a lack of technology that halts scanning once motion artifacts arise.

View Article and Find Full Text PDF

As tactile force sensing has become increasingly significant in the field of machine haptics, achieving multidimensional force sensing remains a challenge. We propose a 3D flexible force sensor that consists of an axisymmetric hemispherical protrusion and four equally sized quarter-circle electrodes. By simulating the device using a force and electrical field model, it has been found that the magnitude and direction of the force can be expressed through the voltage relationship of the four electrodes when the magnitude of the shear force remains constant and its direction varies within 0-360°.

View Article and Find Full Text PDF

Objective: The progression of brain-computer interfaces (BCIs) has been propelled by breakthroughs in neuroscience, signal processing, and machine learning, marking it as a dynamic field of study over the past few decades. Nevertheless, the nonlinear and non-stationary characteristics of steady-state visual evoked potentials (SSVEPs), coupled with the incongruity between frequently employed linear techniques and nonlinear signal attributes, resulted in the subpar performance of mainstream non-training algorithms like canonical correlation analysis (CCA), multivariate synchronization index (MSI), and filter bank CCA (FBCCA) in short-term SSVEP detection.

Methods: To tackle this problem, the novel fusions of common filter bank analysis, CCA dimensionality reduction methods, USSR models, and MSI recognition models are used in SSVEP signal recognition.

View Article and Find Full Text PDF

Given the poor biomimetic motion of traditional ankle-foot prostheses, it is of great significance to develop an intelligent prosthesis that can realize the biomimetic mechanism of human feet and ankles. To this end, we presented a bionic intelligent ankle-foot prosthesis based on the complex conjugate curved surface. The proposed prosthesis is mainly composed of the rolling conjugated joints with a bionic design and the carbon fiber energy-storage foot.

View Article and Find Full Text PDF

Introduction: In recent years, more and more attention has been paid to the visual fatigue caused by steady state visual evoked potential (SSVEP) paradigm. It is well known that the large-scale application of brain-computer interface is closely related to SSVEP, and the fatigue caused by SSVEP paradigm leads to the reduction of application effect. At present, the mainstream method of objectively quantifying visual fatigue in SSVEP paradigm is based on traditional canonical correlation analysis (CCA).

View Article and Find Full Text PDF

The ability of humans to perceive motion sound sources is important for accurate response to the living environment. Periodic motion sound sources can elicit steady-state motion auditory evoked potential (SSMAEP). The purpose of this study was to investigate the effects of different motion frequencies and different frequencies of sound source on SSMAEP.

View Article and Find Full Text PDF

Objective: Improving the Information Transfer Rate (ITR) is a popular research topic in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). The higher recognition accuracy of short-time SSVEP signal is critical to improving ITR and achieving high-speed SSVEP-BCIs. However, the existing algorithms have unsatisfactory performance on recognizing short-time SSVEP signals, especially for calibration-free methods.

View Article and Find Full Text PDF

Objective: Early diagnosis of infant cerebral palsy (CP) is very important for infant health. In this paper, we present a novel training-free method to quantify infant spontaneous movements for predicting CP.

Methods: Unlike other classification methods, our method turns the assessment into a clustering task.

View Article and Find Full Text PDF

Brain-computer interface (BCI) based on motor imagery (MI) electroencephalogram (EEG) has become an essential way for rehabilitation, because of the activation and interaction of motor neurons between the brain and rehabilitation devices in recent years. However, due to the discrepancies between individuals, the frequency ranges can be different even for the same rhythm component of EEG recordings, which brings difficulties to the extraction of features for MI classification. Typical algorithms for MI classification such as common spatial patterns (CSP) require multi-channel analysis and lack frequency information.

View Article and Find Full Text PDF

In real industrial scenarios, intelligent fault diagnosis based on data-driven methods has been widely researched in the past decade. However, data scarcity is widespread in fault diagnosis tasks owning to the difficulties in collecting adequate data. As a result, there is an increasing demand for both researchers and engineers for fault identification with scarce data.

View Article and Find Full Text PDF

Nowadays, more people tend to go to bed late and spend their sleep time with various electronic devices. At the same time, the BCI (brain−computer interface) rehabilitation equipment uses a visual display, thus it is necessary to evaluate the problem of visual fatigue to avoid the impact on the training effect. Therefore, it is very important to understand the impact of using electronic devices in a dark environment at night on human visual fatigue.

View Article and Find Full Text PDF

Magnetic energy is an abundant and persistent form of energy radiating from various sources. Here, a hybrid triboelectric-electromagnetic magnetic energy harvester (HMEH) system consisting of a modified pendulum unit is proposed, interacting mechanically with two multilayered TENGs and remotely with Cu coils. Systematic studies are conducted on magneto-mechano-energy conversion from power transmission lines.

View Article and Find Full Text PDF

We find that the triplet Higgs of the type-II seesaw mechanism can simultaneously generate the neutrino masses and observed baryon asymmetry while playing a role in inflation. We survey the allowed parameter space and determine that this is possible for triplet masses as low as a TeV, with a preference for a small vacuum expectation value for the triplet v_{Δ}<10  keV. This requires that the triplet Higgs must decay dominantly into the leptonic channel.

View Article and Find Full Text PDF

This study aimed to explore whether there was an effect on steady-state visual evoked potential (SSVEP) visual acuity assessment from the oblique effect or the stimulus orientation. SSVEPs were induced by seven visual stimuli, e.g.

View Article and Find Full Text PDF

The refresh rate is one of the important parameters of visual presentation devices, and assessing the effect of the refresh rate of a device on motion perception has always been an important direction in the field of visual research. This study examined the effect of the refresh rate of a device on the motion perception response at different stimulation frequencies and provided an objective visual electrophysiological assessment method for the correct selection of display parameters in a visual perception experiment. In this study, a flicker-free steady-state motion visual stimulation with continuous scanning frequency and different forms (sinusoidal or triangular) was presented on a low-latency LCD monitor at different refresh rates.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) are currently integrated into traditional rehabilitation interventions after stroke. Although BCIs bring many benefits to the rehabilitation process, their effects are limited since many patients cannot concentrate during training. Despite this outcome post-stroke motor-attention dual-task training using BCIs has remained mostly unexplored.

View Article and Find Full Text PDF

. The steady-state visual evoked potential (SSVEP) is one of the most commonly used control signals for brain-computer interfaces (BCIs) due to its excellent interactive potential, such as high tolerance to noises and robust performance across users. In addition, it has a stable cycle, obvious characteristics and minimal training requirements.

View Article and Find Full Text PDF

The purpose of this study was to enhance the performance of steady-state visual evoked potential (SSVEP)-based visual acuity assessment with spatial filtering methods. Using the vertical sinusoidal gratings at six spatial frequency steps as the visual stimuli for 11 subjects, SSVEPs were recorded from six occipital electrodes (O1, Oz, O2, PO3, POz, and PO4). Ten commonly used training-free spatial filtering methods, i.

View Article and Find Full Text PDF

. This study aimed to explore an online, real-time, and precise method to assess steady-state visual evoked potential (SSVEP)-based visual acuity more rapidly and objectively with self-adaptive spatial frequency steps..

View Article and Find Full Text PDF

Brain computer interface (BCI) is a novel communication method that does not rely on the normal neural pathway between the brain and muscle of human. It can transform mental activities into relevant commands to control external equipment and establish direct communication pathway. Among different paradigms, steady-state visual evoked potential (SSVEP) is widely used due to its certain periodicity and stability of control.

View Article and Find Full Text PDF