Options for the continuous and non-invasive monitoring of blood pressure are limited. Cuff-based sphygmomanometers are widely available, yet provide only discrete measurements. The clinical gold-standard approach for the continuous monitoring of blood pressure requires an arterial line, which is too invasive for routine use.
View Article and Find Full Text PDFAccurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow.
View Article and Find Full Text PDFThe development of lead sulfide (PbS) colloidal quantum dot (CQD) solar cells has led to significant power conversion efficiency (PCE) improvements in recent years, with record efficiencies now over 15%. Many of the recent advances in improving PCE have focused on improving the interface between the PbS CQD active layer and the zinc oxide (ZnO) electron transport layer (ETL). Proper optimization of the ZnO ETL also increases yield, or the percentage of functioning devices per fabrication run.
View Article and Find Full Text PDFMimicking natural botanical/zoological systems has revolutionarily inspired four-dimensional (4D) hydrogel robotics, interactive actuators/machines, automatic biomedical devices, and self-adaptive photonics. The controllable high-freedom shape reconfiguration holds the key to satisfying the ever-increasing demands. However, miniaturized biocompatible 4D hydrogels remain rigorously stifled due to current approach/material limits.
View Article and Find Full Text PDFRecent advances in wearable ultrasound technologies have demonstrated the potential for hands-free data acquisition, but technical barriers remain as these probes require wire connections, can lose track of moving targets and create data-interpretation challenges. Here we report a fully integrated autonomous wearable ultrasonic-system-on-patch (USoP). A miniaturized flexible control circuit is designed to interface with an ultrasound transducer array for signal pre-conditioning and wireless data communication.
View Article and Find Full Text PDFSerial assessment of the biomechanical properties of tissues can be used to aid the early detection and management of pathophysiological conditions, to track the evolution of lesions and to evaluate the progress of rehabilitation. However, current methods are invasive, can be used only for short-term measurements, or have insufficient penetration depth or spatial resolution. Here we describe a stretchable ultrasonic array for performing serial non-invasive elastographic measurements of tissues up to 4 cm beneath the skin at a spatial resolution of 0.
View Article and Find Full Text PDFContinuous imaging of cardiac functions is highly desirable for the assessment of long-term cardiovascular health, detection of acute cardiac dysfunction and clinical management of critically ill or surgical patients. However, conventional non-invasive approaches to image the cardiac function cannot provide continuous measurements owing to device bulkiness, and existing wearable cardiac devices can only capture signals on the skin. Here we report a wearable ultrasonic device for continuous, real-time and direct cardiac function assessment.
View Article and Find Full Text PDFElectronic patches, based on various mechanisms, allow continuous and noninvasive monitoring of biomolecules on the skin surface. However, to date, such devices are unable to sense biomolecules in deep tissues, which have a stronger and faster correlation with the human physiological status than those on the skin surface. Here, we demonstrate a photoacoustic patch for three-dimensional (3D) mapping of hemoglobin in deep tissues.
View Article and Find Full Text PDFCompared with their three-dimensional (3D) counterparts, low-dimensional metal halide perovskites (2D and quasi-2D; BAMX, such as B = R-NH, A = HC(NH), Cs; M = Pb, Sn; X = Cl, Br, I) with periodic inorganic-organic structures have shown promising stability and hysteresis-free electrical performance. However, their unique multiple-quantum-well structure limits the device efficiencies because of the grain boundaries and randomly oriented quantum wells in polycrystals. In single crystals, the carrier transport through the thickness direction is hindered by the layered insulating organic spacers.
View Article and Find Full Text PDFRapid fabricating and harnessing stimuli-responsive behaviors of microscale bio-compatible hydrogels are of great interest to the emerging micro-mechanics, drug delivery, artificial scaffolds, nano-robotics, and lab chips. Herein, we demonstrate a novel femtosecond laser additive manufacturing process with smart materials for soft interactive hydrogel micro-machines. Bio-compatible hyaluronic acid methacryloyl was polymerized with hydrophilic diacrylate into an absorbent hydrogel matrix under a tight topological control through a 532 nm green femtosecond laser beam.
View Article and Find Full Text PDFWe synthesized highly branched and electron-donating side chain subunits and attached them to polystyrene (PS) used as a dielectric layer in a pentacene field-effect transistor. The influence of these groups on dielectric function, charge retention, and threshold voltage shifts (Δ) depending on their positions in dielectric multilayers was determined. We compared the observations made on an -perphenylated iminobisaniline side chain with those from the same side chains modified with ZnO nanoparticles and with an adduct formed from tetracyanoethylene (TCNE).
View Article and Find Full Text PDFThe precise placement of semiconductor nanowires (NWs) into two- or three-dimensional (2D/3D) micro-/nanoarchitectures is a key for the construction of integrated functional devices. However, long-pending challenges still exist in high-resolution 3D assembly of semiconductor NWs. Here, we have achieved directional assembly of zinc oxide (ZnO) NWs into nearly arbitrary 3D architectures with high spatial resolution using two-photon polymerization.
View Article and Find Full Text PDFIn this paper, a neoteric algorithm based on a two-dimensional continuous wavelet transform is developed to get the defect contour in the terahertz (THz) non-destructive testing result obtained from a raster-scan frequency-modulated continuous-wave (FMCW) THz imaging system. In order to prove the method's validity, an experiment is carried out. The result of the experiment shows that the method allows one to extract the defect contour from the THz FMCW interference with severe stripe noises.
View Article and Find Full Text PDF