Publications by authors named "Chengbiao Dai"

Isoindolinones, bearing both γ-lactam and aromatic rings, draw extensive interest in organic, pharmaceutical, and medicinal communities as they are important structural motifs in many natural products, bioactive compounds, and pharmaceuticals. As the main contributor to isoindolinone synthesis, metal catalysis is associated with many drawbacks including essential use of toxic/precious metals and excessive additives, high reaction temperatures, specially predesigned starting materials, and long reaction times (typically 8-30 h). In this study, we developed a catalyst- and additive-free, minute-scale, and high-yield microdroplet method for tricomponent isoindolinone synthesis at mild temperatures.

View Article and Find Full Text PDF

Due to their important roles in medicine and asymmetric metal catalysis, the formation of Betti bases has attracted wide interest in organic chemical community. Traditional multicomponent reaction methods for synthesizing Betti bases normally require long reaction times under harsh conditions (high temperature, microwave or ultrasonic irradiation, etc.) in the presence of various catalysts.

View Article and Find Full Text PDF

Because of their unique properties and high biological activities, organophosphorus compounds have been used worldwide in agricultural, industrial, medicinal, and veterinary applications. Conventional strategies for direct phosphonylation suffer from the usage of stoichiometric or excessive metallic or nonmetallic catalysts and long reaction times under harsh conditions, leading to a strong desire for environment-friendly protocols for phosphonylation. A protocol for the accelerated phosphonylation of -phenyltetrahydroisoquinolines in minutes was developed without the use of any catalyst in microdroplets.

View Article and Find Full Text PDF