Publications by authors named "Chengbai Dai"

Chronic high-altitude hypoxia (CHH) induces irreversible abnormalities in various organisms. Emerging evidence indicates that CHH markedly suppresses bone mass and bone strength. Targeting senescent cells and the consequent senescence-associated secretory phenotype (SASP) with senolytics is a recently developed novel therapy for multiple age-related diseases.

View Article and Find Full Text PDF

Insufficient hydrogen peroxide content in tumor cells, unsuitable pH and low efficiency of commonly used metal catalysts severely affect the efficiency of chemodynamic therapy, resulting in unsatisfactory efficacy of chemodynamic therapy alone. For this purpose, we designed a composite nanoplatform capable of targeting tumors and selectively degrading in the tumor microenvironment (TME) to address these issues. In this work, we synthesized Au@CoO nanozyme inspired by crystal defect engineering.

View Article and Find Full Text PDF

Hydrogen (H) therapy is a novel and rapidly developing strategy utilized to treat inflammatory diseases. However, the therapeutic efficacy of H is largely limited with on-target off-synovium toxic effect, nonpolarity and low solubility. Herein, an intelligent H nanogenerator based upon the metal-organic framework (MOF) loaded with polydopamine and Perovskite quantum dots is constructed for the actualization of hydrogenothermal therapy.

View Article and Find Full Text PDF

Nanocomposite scaffold materials have shown great prospect in promoting bone integration and bone regeneration. A three-dimensional graphene oxide foam/polydimethylsiloxane/zinc silicate (GF/PDMS/ZS) scaffold for bone tissue engineering was synthesized via dip coating and hydrothermal synthesis processes, resulting in the interconnected macroporous structure. The scaffold was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric (TG) analysis.

View Article and Find Full Text PDF

Three-dimensional honeycomb porous carbon (HPC) has attracted increasing attention in bioengineering due to excellent mechanical properties and a high surface-to-volume ratio. In this paper, a three-dimensional chitosan (CS)/honeycomb porous carbon/hydroxyapatite composite was prepared by nano-sized hydroxyapatite (nHA) on the HPC surface in situ deposition, dissolved in chitosan solution, and vacuum freeze-dried. The structure and composition of CS/HPC/nHA were characterized by scanning electron microscopy, transmission electron miscroscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy, and the porosity, swelling ratio, and mechanical properties of the scaffold were also tested.

View Article and Find Full Text PDF

An increased fracture risk is often observed in cancer patients undergoing radiotherapy (RT), particularly at sites within the field of radiation. Therefore, the development of appropriate therapeutic options to prevent RT-induced bone loss is urgently needed. A soluble form of the BMP receptor type 1A fusion protein (mBMPR1A-mFc) serves as an antagonist to endogenous BMPR1A.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease causing destruction of bone and cartilago articularis. Traditional treatment methods have many side effects, or too concerne about the anti-inflammatory mechanisms but ignore osteanagenesis. In this work, a novel therapeutic platform combined black phosphorus nanosheets (BPNs) into platelet-rich plasma (PRP)-chitosan thermoresponsive hydrogel has been prepared for management of RA.

View Article and Find Full Text PDF

Composite biomaterials with hierarchical structures have emerged as new approaches for bone-tissue engineering. In this study, a biomimetic, osteoconductive tricomposite scaffold made of N-doped graphene-hydroxyapatite (NG-HA) hybrids blended with an agarose (AG) matrix was prepared via a facile hydrothermal/cross-linking/freeze-drying method. The structure and composition of AG/NG-HA were examined by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared, Raman spectroscopy, and thermogravimetric analysis.

View Article and Find Full Text PDF