Publications by authors named "ChengYu Mao"

Article Synopsis
  • Myocardial ischemia-reperfusion injury (MIRI) is a major issue in heart treatment, and effective solutions are lacking.
  • Research aimed to explore if extracellular vesicles (EVs) from GABA-treated adipose mesenchymal stem cells (ADSCs) could better reduce oxidative stress in heart cells.
  • Findings showed that GABA enhances the miR-21-5p levels in EVs, leading to reduced mitochondrial stress and protection of heart cells by regulating TXNIP expression.
View Article and Find Full Text PDF

Objective: Cardiomyocyte apoptosis critically contributes to ischemia reperfusion injury (IRI), which lacks effective therapeutic strategies. Circular RNAs (circRNAs) serve as novel diagnostic and therapeutic targets in various cardiovascular diseases. CircRNA Fbxl5 is one of the abundantly expressed circRNAs in the heart and its role in myocardial IRI remains elusive.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) derived from hypoxia-preconditioned (HP) mesenchymal stem cells (MSCs) have better cardioprotective effects against myocardial infarction (MI) in the early stage than EVs isolated from normoxic (NC)-MSCs. However, the cardioprotective mechanisms of HP-EVs are not fully understood.

Aim: To explore the cardioprotective mechanism of EVs derived from HP MSCs.

View Article and Find Full Text PDF

Objective: V-set and transmembrane domain-containing protein 1 (VSTM1) is negatively correlated with inflammation. However, its effect on atherosclerosis (AS) remains largely unexplored. In this study, we aimed to assess the effect of VSTM1 on the biological function of human peripheral blood mononuclear cells /macrophages stimulated by oxidized low-density lipoprotein (ox-LDL).

View Article and Find Full Text PDF
Article Synopsis
  • Coronary heart disease often leads to vascular endothelial injury, with endothelial-mesenchymal transition (EndMT) being a key factor in this process.
  • The study focused on miR-221 and its role in EndMT of endothelial progenitor cells (EPCs), using TGF-β1 to induce changes and various methods to analyze gene expression.
  • Results showed that inhibiting miR-221 increased proteins associated with EndMT, while overexpression led to a decrease in these proteins, indicating that miR-221 plays a crucial regulatory role in this transition.
View Article and Find Full Text PDF

The aim of this study was to investigate the correlation between v-set and transmembrane domain-containing 1 (VSTM1) expression and incidence of major adverse cardiac events (MACE) in patients with coronary heart disease (CHD). A total of 310 patients were divided into a non-acute coronary syndrome (non-ACS) group (containing the stable angina group, and the asymptomatic coronary artery diseaseand other patients group) and an ACS group (containing unstable angina and acute myocardial infarction patients). Monocytic VSTM1 expression levels (assessed via average fluorescence intensity derived from antibody binding to VSTM1) in each group were detected and analyzed.

View Article and Find Full Text PDF

Our study was aimed to investigate the effects of lgals3a (Gal-3 encoding gene) on the development of zebrafish embryo and its underlying mechanisms. Morpholino (MO) technology was used to inhibit the expression of zebrafish lgals3a, and the effect of lgals3a gene knockdown on zebrafish embryo development and the number of monocyte macrophages was observed. Effect of lgals3a-e3i3-MO on apoptosis of zebrafish was detected by acridine orange staining.

View Article and Find Full Text PDF

Evidence suggests that nicotine intake promotes atherosclerosis. We enrolled 100 patients with coronary heart disease (CHD) and found that plaque burden, TXNIP expression, and inflammatory chemokine levels were higher in smokers than non-smokers. Additionally, patients with higher TXNIP expression in peripheral blood mononuclear cells (PBMCs) had a higher Gensini Scores and higher plasma IL-1β and IL-18 levels.

View Article and Find Full Text PDF
Article Synopsis
  • * Results show that EVs from anoxia-preconditioned MSCs significantly reduce heart cell death and injury, outperforming EVs from normoxic MSCs when tested in mice facing MIRI.
  • * Key findings highlight the role of a specific miRNA (miRNA224-5p) in mediating this protective effect by downregulating a protein (TXNIP) that contributes to cell death pathways, thereby preserving survival signals
View Article and Find Full Text PDF

Objective: Post myocardial infarction (MI) fibrosis has been identified as an important factor in the progression of heart failure. Previous studies have revealed that microRNA-21 (miR-21) plays an important role in the pathogenesis of fibrosis. The purpose of this study was to explore the role of miR-21 in post-MI cardiac fibrosis.

View Article and Find Full Text PDF

Introduction: The aim of this study was to screen the leading compounds of natural origin with anti-angiogenic potential and to investigate their anti-angiogenic mechanism preliminarily.

Materials And Methods: An initial screening of 240 compounds from the Natural Products Collection of MicroSource was performed using the transgenic zebrafish strain . The zebrafish embryos at 24 h post-fertilization were exposed to the natural compounds for an additional 24 h; then, morphological changes in the intersegmental vessels (ISVs) were observed and quantified under a fluorescence microscope.

View Article and Find Full Text PDF

Background: Myocardial ischaemia reperfusion injury (MIRI) is a difficult problem in clinical practice, and it may involve various microRNAs. This study investigated the role that endogenous microRNA-146a plays in myocardial ischaemia reperfusion and explored the possible target genes.

Methods: MIRI models were established in microRNA-146a deficient (KO) and wild type (WT) mice.

View Article and Find Full Text PDF

Background And Aims: Atherosclerosis is a chronic inflammatory disorder mediated by macrophage activation. MicroRNA-21 (miR-21) is a key regulator in the macrophage inflammatory response. However, the functional role of miR-21 in atherogenesis is far from clear.

View Article and Find Full Text PDF

Gas formation during lithium-ion battery (LIB) cycling impacts the stability and safety of these batteries, especially for those containing Ni-rich NMC cathodes. In this paper, the cycling performance and gassing behavior of NMC811/graphite full cells with 4.2 and 4.

View Article and Find Full Text PDF

Developing photoanodes with efficient visible-light harvesting and excellent charge separation still remains a key challenge in photoelectrochemical water splitting. Here zeolite-type chalcogenide CPM-121 is integrated with TiO nanowires to form a heterostructured photoanode, in which crystalline CPM-121 particles serve as a visible light absorber and TiO nanowires serve as an electron conductor. Owing to the small band gap of chalcogenides, the hybrid electrode demonstrates obvious absorption in visible-light range.

View Article and Find Full Text PDF

The development of novel photocatalysts usually centers on features such as band structures, various nano-, micro-, or macro-forms, and composites in efforts to tune their light absorption and charge separation efficiency. In comparison, the selectivity of photocatalysts with respect to features of reactants such as size and charge has received much less attention, in part due to the difficulty in designing semiconducting photocatalysts with uniform pore size. Here, we use crystalline porous chalcogenides as a platform to probe reactant selectivity in photocatalytic processes.

View Article and Find Full Text PDF

We herein report a visible-light-mediated heterogeneous [4+2] annulation of N-cyclobutylanilines with alkynes catalyzed by self-doped Ti @TiO . The self-doped Ti @TiO is stable under photooxidation conditions, easy to recycle, and can be used multiple times without appreciable loss of activity. Extensive mechanistic studies suggest that the annulation reaction is mediated by singlet oxygen, which is generated through the photosensitization of oxygen in the air by the self-doped Ti @TiO .

View Article and Find Full Text PDF

Pore space partition, especially the one using C-symmetric 2,4,6-tri(4-pyridyl)-1,3,5-triazine as pore-partition agent in MIL-88 type (the acs net), has been shown to dramatically enhance CO uptake to near-record values. The continued advance in property engineering via pore space partition would depend on intelligent design of both framework components and pore-partition agent. Here, we report a new advance in the design of pore-partition agent by demonstrating a symmetry-guided pathway to develop a large variety of di- and trinuclear 1,2,4-triazolate-based clusters for use as pore-partition agent.

View Article and Find Full Text PDF

Metal-organic frameworks are a class of crystalline porous materials with potential applications in catalysis, gas separation and storage, and so on. Of great importance is the development of innovative synthetic strategies to optimize porosity, composition and functionality to target specific applications. Here we show a platform for the development of metal-organic materials and control of their gas sorption properties.

View Article and Find Full Text PDF

A highly effective, low-cost strategy for improved photocatalytic efficiency and stability of CdS is described. Based on the integration of hexagonal-cubic core-shell architecture with nanorod morphology, the concentric CdS nanorod phase junctions (NRPJs) obtained demonstrate extremely high H production rate and unprecedented photocatalytic stability.

View Article and Find Full Text PDF

Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps.

View Article and Find Full Text PDF

Despite their having much greater potential for compositional and structural diversity, heterometallic metal-organic frameworks (MOFs) reported so far have lagged far behind their homometallic counterparts in terms of CO2 uptake performance. Now the power of heterometallic MOFs is in full display, as shown by a series of new materials (denoted CPM-200s) with superior CO2 uptake capacity (up to 207.6 cm(3)/g at 273 K and 1 bar), close to the all-time record set by MOF-74-Mg.

View Article and Find Full Text PDF

Cationic frameworks can selectively trap anions through ion exchange, and have applications in ion chromatography and drug delivery. However, cationic frameworks are much rarer than anionic or neutral ones. Herein, we propose a concept, preemptive coordination (PC), for targeting positively charged metal-organic frameworks (P-MOFs).

View Article and Find Full Text PDF

The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity.

View Article and Find Full Text PDF

Metal-organic polyhedra (MOPs) or frameworks (MOFs) based on Cr(3+) are notoriously difficult to synthesize, especially as crystals large enough to be suitable for characterization of the structure or properties. It is now shown that the co-existence of In(3+) and Cr(3+) induces a rapid crystal growth of large single crystals of heterometallic In-Cr-MOPs with the [M8L12] (M=In/Cr, L=dinegative 4,5-imidazole-dicarboxylate) cubane-like structure. With a high concentration of protons from 12 carboxyl groups decorating every edge of the cube and an extensive H-bonded network between cubes and surrounding H2O molecules, the newly synthesized In-Cr-MOPs exhibit an exceptionally high proton conductivity (up to 5.

View Article and Find Full Text PDF