Guang Pu Xue Yu Guang Pu Fen Xi
June 2016
The isothermal surface equation of tri-band radiation thermometry with linear emissivity model has been deduced, based on tri-band radiation measurement equations. The isothermal surface equation is the point multiplication of measurement signal vector and measurement signal coefficient vector. The solution algorithm for tri-band radiation thermometry defined as dichotomy with coefficients stored in this paper has been developed because of the characteristics of measurement signal vector which is only the function of temperature and the advantage of dichotomy in solving non-linear equation.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
December 2014
In order to measure the temperature of the object in the case of non-diffuse emission within a finite solid angle, a new concept for radiation thermometry, the apparent emissivity, has been presented firstly after a proper mathematical transformation of the radiation measurement equation and its characteristics have also been investigated. The results indicated that although the apparent emissivity is complex in form, it is only the function of the wavelength for one measurement even if the object is non-diffuse. So the temperature of the object in the case of non-diffuse emission within a finite solid angle can be solved by modeling the apparent emissivity.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
February 2013
Based on Planck's law, the surface temperature of an object can be determined by measurement of emitted radiation. The equation for monochromatic radiation thermometry within a finite solid-angle was deduced, and it was found that if the surface temperature and spectral emissivity can be solved at the same time, the specific radiation measurement conditions for multi-spectral thermometry should be generally met that the radiation measurement should be implemented within an infinitesimal solid-angle or within a finite solid-angle only for a perfect diffuser. When the directional spectral emissivity modeled by finite polynomial series is employed and proper mathematical transformation is used, a universal equation for monochromatic radiation thermometry is obtained.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
October 2012
Abstract True surface temperatures can be determined by measurements of radiation emitted by the object. The non-spectral parameter in the radiation measurement equation is the function of the relative position between the target and the lens, so calibration of space position is necessary for temperature measurement, when emissivity and temperature are measured simultaneously. In the present paper, the non-spectral parameter was included into the undetermined coefficients of emissivity modeled by finite series, which will not affect the solution of true surface temperature.
View Article and Find Full Text PDF