Nanomagnetic logic (NML) has attracted attention during the last two decades due to its promise of high energy efficiency combined with non-volatility. Data transmission in NML relies on Bennett clocking through dipole interaction between neighboring nanomagnetic bits. This paper uses a fully coupled finite element model to simulate Bennett clocking based on strain-mediated multiferroic system for Ni, CoFeB and Terfenol-D with perpendicular magnetic anisotropies.
View Article and Find Full Text PDFStrain-coupled multiferroic heterostructures provide a path to energy-efficient, voltage-controlled magnetic nanoscale devices, a region where current-based methods of magnetic control suffer from Ohmic dissipation. Growing interest in highly magnetoelastic materials, such as Terfenol-D, prompts a more accurate understanding of their magnetization behavior. To address this need, we simulate the strain-induced magnetization change with two modeling methods: the commonly used unidirectional model and the recently developed bidirectional model.
View Article and Find Full Text PDFStrain-mediated thin film multiferroics comprising piezoelectric/ferromagnetic heterostructures enable the electrical manipulation of magnetization with much greater efficiency than other methods; however, the investigation of nanostructures fabricated from these materials is limited. Here we characterize ferromagnetic Ni nanostructures grown on a ferroelectric PMN-PT substrate using scanning electron microscopy with polarization analysis (SEMPA) and micromagnetic simulations. The magnetization of the Ni nanostructures can be controlled with a combination of sample geometry and applied electric field, which strains the ferroelectric substrate and changes the magnetization via magnetoelastic coupling.
View Article and Find Full Text PDFControlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel 'peanut' and 'cat-eye' shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy.
View Article and Find Full Text PDFIn this work, we experimentally demonstrate deterministic electrically driven, strain-mediated domain wall (DW) rotation in ferromagnetic Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3)O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates.
View Article and Find Full Text PDFMicromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model, assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. This paper presents analytical work intended to significantly improve the simulation of finite structures by fully coupling the LLG model with elastodynamics, i.
View Article and Find Full Text PDF