In this work, the hypothesis that thermoplastic polyurethane (TPU) microplastics (MPs) could form complex toxic pollution by absorbing both antibiotics and heavy metals simultaneously was proposed. The unique features of the adsorption of Cu(II) and oxytetracycline (OTC) on the pristine TPU and photo-aged (aged) TPU MPs in single and coexisting system were investigated, which included the kinetics, isothermal equilibrium and thermodynamics. The possibly synergistic or competitive effects between Cu(II) and OTC were also evaluated.
View Article and Find Full Text PDFThe interaction between microplastics, heavy metals, and antibiotics can lead to combined pollution, which could result in greater environmental damage. The pathway and mechanism of the interaction between microplastics, heavy metals, and antibiotics are the preconditions for evaluating the associated environmental risk; however, these are not well understood. As probe sorbates, the sorption behaviors of copper ions (Cu) and tetracycline (TC) on two microplastics [high density polyethylene (HPDE) and general-purpose polystyrene (GPPS)] in aqueous solution were investigated and the welding theory with relevant experimental results were discussed.
View Article and Find Full Text PDFHydrogen sulfide (H2S(g)) emission from landfills is a widespread problem, especially when aged refuse is excavated. H2S(g) emission from aged refuse exposed to air was investigated and the results showed that large amounts of H2S(g) can be released, especially in the first few hours after excavation, when H2S(g) concentrations in air near refuse could reach 2.00 mg m(-3).
View Article and Find Full Text PDFHydrogen sulfide (H2S) is regarded as a major odor causing compound in landfill gas that may lead to adverse environmental and health effects. In this study, the potential role of iron in the entire life cycle of H2S production and emission was investigated during the decomposition of biodegradable substrates in the landfilled refuse. The results showed that the quantity of H2S emission decreased about 95% when Fe(OH)3 was present in the biodegradable sulfur-containing substrates.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2014
Sorption is a fundamental process controlling the transformation, fate, degradation, and biological activity of hydrophobic organic contaminants in the environment. We investigated the kinetics, isotherms, and potential mechanisms for the sorption of two phthalic acid esters (PAEs), dibutyl phthalate (DBP) and dioctyl phthalate (DOP), on aged refuse. A two-compartment first-order model performed better than a one-compartment first-order model in describing the kinetic sorption of PAEs, with a fast sorption process dominating.
View Article and Find Full Text PDFConcentrated leachate from membrane treatment processes is a potential pollution source for the surroundings. In this study, with comparison of the landfill leachate, chemical and microbial characteristics of concentrated leachate including biodegradability, amount of nitrogenous compounds and heavy metals, dissolved organic matter composition, and microbial community were investigated in three landfill leachate treatment plants. The results showed that hydrophilic (HyI) fraction was the major dissolved organic carbon in the landfill leachates, accounting for 54.
View Article and Find Full Text PDFConsidering the refuse and leachate as one whole system, a conventional landfill (CL) was set as a control, transformation of dibutyl phthalate (DBP) in recirculated landfill (RL) and bioreactor landfill (BL) was studied. Results showed that DBP was detected in both leachate and refuse from CL, RL and BL. The initial DBP amount was 18.
View Article and Find Full Text PDFThe aim of the present study was to investigate the leaching behavior of iron from simulated landfills with different operation modes, with an emphasis on the variation of iron in different oxidation state, ferrous Fe(II) and ferric Fe(III) percentage and the distribution of iron content in different landfill leachate fractions. The leaching behavior and accumulated amounts of iron leached out by leachate from conventional landfill (CL) and leachate recirculated landfill (RL) exhibited decidedly different trends except for the initial 28 days. In addition, the percentage of iron leached from CL and RL accounted 1.
View Article and Find Full Text PDFWaste biocover soil was investigated as an alternative in regions with a shortage of landfill cover soil. In the work, effects of the composition, ambient conditions and nitrogen stress on CH(4) oxidation in waste biocover soil were studied. The results showed that the optimal composition of waste biocover soil as a landfill cover material for CH(4) oxidation was original pH value, 45% moisture and a particle size of ≤ 4mm.
View Article and Find Full Text PDFThe aim of this study was to find a feasible method for the treatment of solid waste generated in the remote rural, where the transportation costs are prohibitive and the resources to construct and maintain conventional treatment plants are not available. This process, consisted of two types of simulated bioreactor landfill (one was recirculated bioreactor landfill, and the other was comprised of fresh and aged refuse reactor) and a soil infiltration system, was operated in ambient temperature for 180 days all together. After treated by the system of fresh and aged refuse reactor, the refuse and leachate reached a strongly degraded and stable state.
View Article and Find Full Text PDFLandfill is an important anthropogenic source of odorous gases. In this work, the adsorption characteristics of H(2)S on waste biocover soil, an alternative landfill cover, were investigated. The results showed that the adsorption capacity of H(2)S increased with the reduction of particle size, the increase of pH value and water content of waste biocover soil.
View Article and Find Full Text PDFThis work describes the effect of weathering of fresh quenched municipal solid waste incinerator (MSWI) bottom ash on the fractionation and leaching behavior of Cu. A sequential extraction procedure was used to characterize the fractionation of Cu in the fresh and weathered MSWI bottom ash samples. It showed that the organic matter bound fraction of Cu decreased drastically from 69% to 37% during the weathering treatment, while the residual fraction, Fe-Mn oxides bound fraction, carbonate bound fraction and exchangeable fraction increased from 24% to 54%, 3% to 4%, 2% to 3% and 2% to 3%, respectively.
View Article and Find Full Text PDFTwo extraction reagents, hydrochloric acid (HCl) and acid ammonium oxalate solution (Tamm's reagent), were used to evaluate the redox state of iron in municipal solid waste (MSW) with different deposit ages. Orthogonal experiments were conducted to optimize the extraction conditions for extractable iron speciation (ferric and ferrous) in MSW. The optimal extraction conditions for HCl were determined as follows: the liquid-to-solid ratio was set at 100, and then the samples were extracted at the shaking speed of 200 rpm at 35 degrees C for 60 min by 1.
View Article and Find Full Text PDFThe liquid-to-solid ratio (L/S) of semi-solid Fenton process (SSFP) designated for hazardous solid waste detoxication was investigated. The removal and minimization effects of o-nitroaniline (ONA) in simulate solid waste residue (SSWR) from organic arsenic industry was evaluated by total organic carbon (TOC) and ONA removal efficiency, respectively. Initially, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the key factors of SSFP.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2010
Purpose: To protect the environmental quality of soil, groundwater, and surface water near the landfill site, it is necessary to make an accurate assessment of the heavy metal mobility. This study aims to present the bio-immobilization behavior of heavy metals in landfill and provide some reference suggestion for the manipulation of heavy metal pollution control after closure.
Materials And Methods: Two simulated bioreactor landfill system loaded with real municipal solid waste (MSW), namely, conventional bioreactor landfill (CL) and leachate recirculated bioreactor landfill (RL), were operated.
The removal of phthalic acid diesters (PAEs) in municipal solid waste (MSW) from two simulated landfill reactors was compared. The results showed that the original concentrations of dimethyl phthalate (DMP), dibutyl phthalate (DBP) and dioctyl phthalate (DOP) in the refuse were 3.3 microg g(-1), 18.
View Article and Find Full Text PDFThe purpose of this research was to determine the releasing behavior of zinc in municipal solid waste (MSW) in landfill site with respect to refuse and leachate as an inseparable system. Two simulated bioreactor landfills, one with leachate recirculation and the other without, were operated in room temperature for 320 days. Results showed that the content of zinc in MSW could amount to 591.
View Article and Find Full Text PDFJ Hazard Mater
September 2009
Copper and zinc were determined in MSW samples collected from Tianziling landfill site in Hangzhou, Zhejiang, east China by modified BCR sequential extractions. Three pretreatment methods, including fresh, air drying, and oven drying, were studied. It showed that the main cause of fraction transfer after drying could be ascribed to the variation of sample status, including the evaporation of ammonia nitrogen and volatile fatty acid (VFA), the shift of sample pH, and the oxidation of sulfur, when contacted with atmospheric oxygen or exposed in high temperature during drying processes.
View Article and Find Full Text PDFObjective: To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation.
Methods: COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10 degrees C-28 degrees C) in a CABR.
Results: The removal efficiencies declined with the decreases of HRTs and temperatures.
In this study, the behavior of dibutyl phthalate (DBP) from municipal solid waste (MSW) in the leachate and refuse of two simulated landfill bioreactors was compared. In one reactor, the leachate was circulated between a landfill and a methanogenic reactor, while the other reactor was operated using direct recirculation of the leachate. The results revealed that the original concentration of DBP in the refuse was approximately 18.
View Article and Find Full Text PDFThe purpose of this study was to determine the releasing behavior of copper in municipal solid waste (MSW) in landfill with respect to refuse and leachate as an inseparable system. Two simulated bioreactor landfills, one with leachate recirculation and the other without, were operated in room temperature for 320 days. Copper in refuse showed behaviors of staggered migration and retention, which corresponded with the degradation process of landfill obviously.
View Article and Find Full Text PDFThe feasibility of in situ nitrogen removal in phase-separate bioreactor landfill was investigated. In the experiment, two sets of bioreactor landfill systems, namely conventional two-phase and in situ nitrogen removal bioreactor landfills, were operated. The in situ nitrogen removal bioreactor landfill (NBL) was comprised of a fresh-refuse filled reactor (NBLF), a methanogenic reactor (NBLM) and a nitrifying reactor (NBLN), while the two-phase bioreactor landfill (BL) used as control was comprised of a fresh-refuse filled reactor (BLF) and a methanogenic reactor (BLM).
View Article and Find Full Text PDFThe effects of metsulfuron-methyl, a sulfonylurea herbicide, on the wheat soil microorganisms were evaluated by the methods of microbial inoculation culture, and the activities of three enzymes were measured using the colorimetric method. The tolerant microorganisms that can resist 500 microg x g(-1) metsulfuron-methyl in the counting culture medium were studied specially. Metsulfuron-methyl distinctly inhibited the common aerobic heterotriphic bacteria, but the effects on common fungi and common actinomycete were not evident.
View Article and Find Full Text PDF