The rate at which motor vehicle exhaust undergoes dilution with ambient air will greatly affect the size distribution characteristics of the particulate emissions. Wind tunnel experiments were conducted to investigate the impacts of vehicle shape, tailpipe orientation, and exhaust exit velocity on the dilution profiles under steady driving conditions for three model vehicles: a light-duty truck, a passenger car, and a heavy-duty tractor head. A three dimensional array of 60 sensors provided simultaneous measurements of dilution ratios for the emissions in the near- and far-wake regions downstream of the vehicle.
View Article and Find Full Text PDFThe particle and gaseous pollutants in vehicle exhaust emissions undergo rapid dilution with ambient air after exiting the tailpipe. The rate and extent of this dilution can greatly affect both the size evolution of primary exhaust particles and the potential for formation of ultrafine particles. Dilution ratios were measured inside of a wind tunnel in the region immediately downstream of the tailpipe using model vehicles (approximately one-fifth to one-seventh scale models) representing a light-duty truck, a passenger car, and a heavy-duty tractor head (without the trailer).
View Article and Find Full Text PDF