Defects to popular two-dimensional (2D) transition metal dichalcogenides (TMDs) seriously lower the efficiency of field-effect transistor (FET) and depress the development of 2D materials. These atomic defects are mainly identified and researched by scanning tunneling microscope (STM) because it can provide precise measurement without harming the samples. The long analysis time of STM for locating defects in images has been solved by combining feature detection with convolutional neural networks (CNN).
View Article and Find Full Text PDF