Publications by authors named "Cheng-Tsung Lu"

Background: Protein S-sulfenylation is a type of post-translational modification (PTM) involving the covalent binding of a hydroxyl group to the thiol of a cysteine amino acid. Recent evidence has shown the importance of S-sulfenylation in various biological processes, including transcriptional regulation, apoptosis and cytokine signaling. Determining the specific sites of S-sulfenylation is fundamental to understanding the structures and functions of S-sulfenylated proteins.

View Article and Find Full Text PDF

Protein O-GlcNAcylation, involving the β-attachment of single N-acetylglucosamine (GlcNAc) to the hydroxyl group of serine or threonine residues, is an O-linked glycosylation catalyzed by O-GlcNAc transferase (OGT). Molecular level investigation of the basis for OGT's substrate specificity should aid understanding how O-GlcNAc contributes to diverse cellular processes. Due to an increasing number of O-GlcNAcylated peptides with site-specific information identified by mass spectrometry (MS)-based proteomics, we were motivated to characterize substrate site motifs of O-GlcNAc transferases.

View Article and Find Full Text PDF

Unlabelled: S-sulfenylation (S-sulphenylation, or sulfenic acid), the covalent attachment of S-hydroxyl (-SOH) to cysteine thiol, plays a significant role in redox regulation of protein functions. Although sulfenic acid is transient and labile, most of its physiological activities occur under control of S-hydroxylation. Therefore, discriminating the substrate site of S-sulfenylated proteins is an essential task in computational biology for the furtherance of protein structures and functions.

View Article and Find Full Text PDF

S-glutathionylation, the covalent attachment of a glutathione (GSH) to the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-glutathionylation remains unknown. Based on a total of 1783 experimentally identified S-glutathionylation sites from mouse macrophages, this work presents an informatics investigation on S-glutathionylation sites including structural factors such as the flanking amino acids composition and the accessible surface area (ASA).

View Article and Find Full Text PDF

Background: Protein O-GlcNAcylation, involving the attachment of single N-acetylglucosamine (GlcNAc) to the hydroxyl group of serine or threonine residues. Elucidation of O-GlcNAcylation sites on proteins is required in order to decipher its crucial roles in regulating cellular processes and aid in drug design. With an increasing number of O-GlcNAcylation sites identified by mass spectrometry (MS)-based proteomics, several methods have been proposed for the computational identification of O-GlcNAcylation sites.

View Article and Find Full Text PDF

Given the increasing number of proteins reported to be regulated by S-nitrosylation (SNO), it is considered to act, in a manner analogous to phosphorylation, as a pleiotropic regulator that elicits dual effects to regulate diverse pathophysiological processes by altering protein function, stability, and conformation change in various cancers and human disorders. Due to its importance in regulating protein functions and cell signaling, dbSNO (http://dbSNO.mbc.

View Article and Find Full Text PDF

Lysine acetylation is an important and ubiquitous posttranslational modification conserved in prokaryotes and eukaryotes. This process, which is dynamically and temporally regulated by histone acetyltransferases and deacetylases, is crucial for numerous essential biological processes such as transcriptional regulation, cellular signaling, and stress response. Since the experimental identification of lysine acetylation sites within proteins is time-consuming and laboratory-intensive, several computational approaches have been developed to identify candidates for experimental validation.

View Article and Find Full Text PDF

The abnormal S-nitrosylation induced by the overexpression and activation of inducible nitric oxide synthase (iNOS) modulates many human diseases, such as inflammation and cancer. To delineate the pathophysiological S-nitrosoproteome in cancer patients, we report an individualized S-nitrosoproteomic strategy with a label-free method for the site-specific quantification of S-nitrosylation in paired tumor and adjacent normal tissues from 11 patients with colorectal cancer (CRC). This study provides not only the first endogenous human S-nitrosoproteomic atlas but also the first individualized human tissue analysis, identifying 174 S-nitrosylation sites in 94 proteins.

View Article and Find Full Text PDF

Unlabelled: S-glutathionylation, the reversible protein posttranslational modification (PTM) that generates a mixed disulfide bond between glutathione and cysteine residue, critically regulates protein activity, stability and redox regulation. Due to its importance in regulating oxidative/nitrosative stress and balance in cellular response, a number of methods have been rapidly developed to study S-glutathionylation, thus expanding the dataset of experimentally determined glutathionylation sites. However, there is currently no database dedicated to the integration of all experimentally verified S-glutathionylation sites along with their characteristics or structural or functional information.

View Article and Find Full Text PDF

Protein phosphorylation catalyzed by kinases plays crucial roles in regulating a variety of intracellular processes. Owing to an increasing number of in vivo phosphorylation sites that have been identified by mass spectrometry (MS)-based proteomics, the RegPhos, available online at http://csb.cse.

View Article and Find Full Text PDF

Background: The phosphorylation of virus proteins by host kinases is linked to viral replication. This leads to an inhibition of normal host-cell functions. Further elucidation of phosphorylation in virus proteins is required in order to aid in drug design and treatment.

View Article and Find Full Text PDF

Transmembrane (TM) proteins have crucial roles in various cellular processes. The location of post-translational modifications (PTMs) on TM proteins is associated with their functional roles in various cellular processes. Given the importance of PTMs in the functioning of TM proteins, this study developed topPTM (available online at http://topPTM.

View Article and Find Full Text PDF

Protein modification is an extremely important post-translational regulation that adjusts the physical and chemical properties, conformation, stability and activity of a protein; thus altering protein function. Due to the high throughput of mass spectrometry (MS)-based methods in identifying site-specific post-translational modifications (PTMs), dbPTM (http://dbPTM.mbc.

View Article and Find Full Text PDF

Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses.

View Article and Find Full Text PDF

Unlabelled: S-nitrosylation (SNO), a selective and reversible protein post-translational modification that involves the covalent attachment of nitric oxide (NO) to the sulfur atom of cysteine, critically regulates protein activity, localization and stability. Due to its importance in regulating protein functions and cell signaling, a mass spectrometry-based proteomics method rapidly evolved to increase the dataset of experimentally determined SNO sites. However, there is currently no database dedicated to the integration of all experimentally verified S-nitrosylation sites with their structural or functional information.

View Article and Find Full Text PDF

Background: Carboxylation is a modification of glutamate (Glu) residues which occurs post-translation that is catalyzed by γ-glutamyl carboxylase in the lumen of the endoplasmic reticulum. Vitamin K is a critical co-factor in the post-translational conversion of Glu residues to γ-carboxyglutamate (Gla) residues. It has been shown that the process of carboxylation is involved in the blood clotting cascade, bone growth, and extraosseous calcification.

View Article and Find Full Text PDF

In proteins, glutamate (Glu) residues are transformed into γ-carboxyglutamate (Gla) residues in a process called carboxylation. The process of protein carboxylation catalyzed by γ-glutamyl carboxylase is deemed to be important due to its involvement in biological processes such as blood clotting cascade and bone growth. There is an increasing interest within the scientific community to identify protein carboxylation sites.

View Article and Find Full Text PDF

Background: Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in intracellular signal transduction. Due to the difficulty in performing high-throughput mass spectrometry-based experiment, there is a desire to predict phosphorylation sites using computational methods. However, previous studies regarding in silico prediction of plant phosphorylation sites lack the consideration of kinase-specific phosphorylation data.

View Article and Find Full Text PDF

Unlabelled: Bioinformatics research often requires conservative analyses of a group of sequences associated with a specific biological function (e.g. transcription factor binding sites, micro RNA target sites or protein post-translational modification sites).

View Article and Find Full Text PDF