Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain.
View Article and Find Full Text PDFNeuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections.
View Article and Find Full Text PDFThe dentate gyrus (DG) is the primary gate of the hippocampus and controls information flow from the cortex to the hippocampus proper. To maintain normal function, granule cells (GCs), the principal neurons in the DG, receive fine-tuned inhibition from local-circuit GABAergic inhibitory interneurons (INs). Abnormalities of GABAergic circuits in the DG are associated with several brain disorders, including epilepsy, autism, schizophrenia, and Alzheimer disease.
View Article and Find Full Text PDFLamotrigine (LTG) is generally considered as a voltage-gated sodium (Nav) channel blocker. However, recent studies suggest that LTG can also serve as a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel enhancer and can increase the excitability of GABAergic interneurons (INs). Perisomatic inhibitory INs, predominantly fast-spiking basket cells (BCs), powerfully inhibit granule cells (GCs) in the hippocampal dentate gyrus.
View Article and Find Full Text PDFThe calcium-sensitive type VI adenylyl cyclase (AC6) is a membrane-bound adenylyl cyclase (AC) that converts ATP to cAMP under stimulation. It is a calcium-inhibited AC and integrates negative inputs from Ca(2+) and multiple other signals to regulate the intracellular cAMP level. In the present study, we demonstrate that AC6 functions upstream of CREB and negatively controls neuronal plasticity in the hippocampus.
View Article and Find Full Text PDFGamma-aminobutyric acidergic (GABAergic) interneurons (INs) in the dentate gyrus (DG) provide inhibitory control to granule cell (GC) activity and thus gate incoming signals to the hippocampus. However, how various IN subtypes inhibit GCs in response to different excitatory input pathways remains mostly unknown. By using electrophysiology and optogenetics, we investigated neurotransmission of the hilar commissural pathway (COM) and the medial perforant path (MPP) to the DG in acutely prepared mouse slices.
View Article and Find Full Text PDFIn this paper we propose an energy-efficient object tracking algorithm in wireless sensor networks (WSNs). Such sensor networks have to be designed to achieve energy-efficient object tracking for any given arbitrary topology. We consider in particular the bi-directional moving objects with given frequencies for each pair of sensor nodes and link transmission cost.
View Article and Find Full Text PDF