Publications by authors named "Cheng-Shun Cheng"

In addition to the Warburg effect, which increases the availability of energy and biosynthetic building blocks in WSSV-infected shrimp, WSSV also induces both lipolysis at the viral genome replication stage (12 hpi) to provide material and energy for the virus replication, and lipogenesis at the viral late stage (24 hpi) to complete virus morphogenesis by supplying particular species of long-chain fatty acids (LCFAs). Here, we further show that WSSV causes a reduction in lipid droplets (LDs) in hemocytes at the viral genome replication stage, and an increase in LDs in the nuclei of WSSV-infected hemocytes at the viral late stage. In the hepatopancreas, lipolysis is triggered by WSSV infection, and this leads to fatty acids being released into the hemolymph.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-induced oxidative stress leads to neuron damage and is involved in the pathogenesis of chronic inflammation in neurodegenerative diseases (NDs), such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Researchers, therefore, are looking for antiinflammatory drugs and gene therapy approaches to slow down or even prevent neurological disorders. Combining therapeutics has shown a synergistic effect in the treatment of human diseases.

View Article and Find Full Text PDF

Infection with the white spot syndrome virus (WSSV) induces a metabolic shift in shrimp that resembles the "Warburg effect" in mammalian cells. This effect is triggered via activation of the PI3K-Akt-mTOR pathway, and it is usually accompanied by the activation of other metabolic pathways that provide energy and direct the flow of carbon and nitrogen. Here we show that unlike the glutamine metabolism (glutaminolysis) seen in most cancer cells to double deaminate glutamine to produce glutamate and the TCA cycle intermediate α-ketoglutarate (α-KG), at the WSSV genome replication stage (12 hpi), although glutaminase (GLS) expression was upregulated, only glutamate was taken up by the hemocytes of WSSV-infected shrimp.

View Article and Find Full Text PDF

Shrimp white spot disease (WSD), which is caused by white spot syndrome virus (WSSV), is one of the world's most serious shrimp diseases. Our objective in this study was to use an immunomagnetic reduction (IMR) assay to develop a highly sensitive, automatic WSSV detection platform targeted against ICP11 (the most highly expressed WSSV protein). After characterizing the magnetic reagents (Fe3O4 magnetic nanoparticles coated with anti ICP11), the detection limit for ICP11 protein using IMR was approximately 2 x 10(-3) ng/ml, and the linear dynamic range of the assay was 0.

View Article and Find Full Text PDF