Publications by authors named "Cheng-Shuang Wang"

Organic photoelectrochemical transistor (OPECT) is an emerging technology studying photo-electric-biological recognition events. Here, this work reports the three-dimensional (3D) Z-scheme poly (1,4-diethynylbenzene) (pDEB)@CuO heterojunction as a high-efficacy photogating module and its application for OPECT bioassay. Specifically, 3D Z-scheme pDEB@CuO heterojunction enabled fast charge transport and ion diffusion in the system, achieving remarkable amplification capability with a current gain as high as ca.

View Article and Find Full Text PDF

Copper ions (Cu) play an essential role in various cellular functions, including respiration, nerve conduction, tissue maturation, oxidative stress defense, and iron metabolism. Covalent organic frameworks (COFs) are a class of porous crystalline materials with directed structural designability and high stability due to the combination of different monomers through covalent bonds. In this study, we synthesized a porphyrin-tetrathiazole COF (TT-COF(Zn)) with Zn-porphyrin and tetrathiafulvalene (TTF) as monomers and used it as a photoactive material.

View Article and Find Full Text PDF

Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)-poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection.

View Article and Find Full Text PDF

Single-cell interrogation with the solid-state nanoprobes enables understanding of the linkage between cellular behavior and heterogeneity. Herein, inspired by the charge property of the organic molecular probe (OMP), a generic ionic current rectification (ICR) single-cell methodology is established, exemplified by subcellular detection of glutathione (GSH) with high selectivity, sensitivity, and recyclability. The as-developed nanosensor can transduce the subcellular OMP-GSH interaction via a sensitive ionic response, which stems from the superior specificity of OMP and its essential charge property.

View Article and Find Full Text PDF

Semiconductor metal-organic frameworks (MOFs) and heterojunctions have gained increasing attention in many fields, yet their full potential remains largely unexplored. Advanced optobioelectronics are envisioned to create more opportunities for innovative biomedical applications. This study reports a UiO-66-NH (U6N)/CdS quantum dots (QDs)-gated organic photoelectrochemical transistor (OPECT) and its application toward energy-transfer-based sensitive microRNA-166a (miRNA-166a) detection assisted by duplex-specific nuclease (DSN)-enabled target recycling.

View Article and Find Full Text PDF

Innovative optoelectronics are expected to play more important role in clinical diagnosis. In this study, on the basis of sensitive gating effect by in situ enzymatic functionalization of semiconductors, a novel organic photoelectrochemical transistor (OPECT) detection of serum alkaline phosphatase (ALP) level was demonstrated. Specifically, the OPECT detection operates upon the ALP-catalyzed hydrolysis of sodium thiophosphate to yield hydrogen sulfide (HS), which could in situ generate CdS on the TiO electrode in the presence of Cd cations.

View Article and Find Full Text PDF

Photon-enabled bioelectronics has long been pursued in modern electronics due to their non-contact, remote-control, and even self-powered function interfacing the biological world with semiconductor devices. The debuting organic photoelectrochemical transistor (OPECT) relies on the photovoltage generated by the semiconductors to modulate the channel conductance, which enables light-fueled operation at zero gate bias. Inspired by the insulating nature of macrobiomolecules and surface capacitance mechanism, herein we demonstrate the biological regulation of the surface capacitance towards new OPECT biodetection, which was exemplified by a CdS quantum dots/TiO nanotubes photoanode accommodating hybridization chain reaction (HCR) amplification with the target of biomarker miRNA-17.

View Article and Find Full Text PDF

Pelvic floor muscle exercise (PFME) is the most common conservative management for urinary incontinence (UI) after radical prostatectomy (RP). However, whether the PFME guided by a therapist (G-PFME) can contribute to the recovery of urinary continence for patients after RP is still controversial. We performed this meta-analysis to investigate the effectiveness of G-PFME on UI after RP and to explore whether the additional preoperative G-PFME is superior to postoperative G-PFME alone.

View Article and Find Full Text PDF