Complex plasmas consist of ionized gas and charged solid microparticles, representing the plasma state of soft matter. We apply machine learning methods to investigate a melting transition in a two-dimensional complex plasma. A convolutional neural network is constructed and trained with the numerical simulation.
View Article and Find Full Text PDFThe propagation of a dissipative soliton was experimentally studied in a two-dimensional binary complex plasma. The crystallization was suppressed in the center of the particle suspension where two types of particles were mixed. The motions of individual particles were recorded using video microscopy, and the macroscopic properties of the solitons were measured in the amorphous binary mixture in the center and in the plasma crystal in the periphery.
View Article and Find Full Text PDFTheoretical results are given in the present paper, which can well explain the experimental observations performed under microgravity conditions in the PK-3 Plus Laboratory on board the International Space Station about the propagation of a solitary wave across an interface in a binary complex plasma. By using the traditional reductive perturbation method and the continuity conditions of both the electric potential and the momentum at the interface, we obtain the equivalent "initial conditions" for both the transmitted wave and the reflected waves from the incident wave. Then we obtain the numbers of the reflected and the transmitted solitary waves as well as all the wave amplitudes by using the inverse scattering method.
View Article and Find Full Text PDFThe penetration of a supersonic particle at the interface is studied in a binary complex plasma. Inspired by the experiments performed in the PK-3 Plus Laboratory on board the International Space Station, Langevin dynamics simulations were carried out. A Mach cone structure forms in the lateral wave behind the supersonic extra particle, where the kink of the cone flanks is observed at the interface.
View Article and Find Full Text PDFSlow dynamics in an amorphous quasi-two-dimensional complex plasma, comprised of microparticles of two different sizes, was studied experimentally. The motion of individual particles was observed using video microscopy, and the self-part of the intermediate scattering function as well as the mean-squared particle displacement was calculated. The long-time structural relaxation reveals the characteristic behavior near the glass transition.
View Article and Find Full Text PDFA binary complex plasma consists of two different types of dust particles in an ionized gas. Due to the spinodal decomposition and force imbalance, particles of different masses and diameters are typically phase separated, resulting in an interface. Both external excitation and internal instability may cause the interface to move with time.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2014
Implications of the recently discovered effect of channeling of upstream extra particles for transport phenomena in a two-dimensional plasma crystal are discussed. Upstream particles levitated above the lattice layer and tended to move between the rows of lattice particles. An example of heat transport is considered, where upstream particles act as moving heat sources, which may lead to anomalous heat transport.
View Article and Find Full Text PDF