Publications by authors named "Cheng-Ping Huang"

Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction.

View Article and Find Full Text PDF

Coupled metasurfaces may refer to a composite plasmonic structure, which consists of multilayered but usually different metasurfaces. A pair of orthogonal plasmonic polarizers, which represents one of such systems, can induce a transmission of light and 90-degree polarization rotation. We explored the effect systematically and found that such effect may be highly efficient and broadband in the near-infrared region.

View Article and Find Full Text PDF

An energy harvester based on a round acoustic fence (RAF) has been proposed and studied. The RAF is composed of cylindrical stubs stuck in a circular array on a thin metal plate, which can confine the acoustic energy efficiently. By removing one stub and thus opening a small gap in the RAF, acoustic leakage with larger intensity can be produced at the gap opening.

View Article and Find Full Text PDF

Enhanced high-order diffractions which are spatially dispersive are desirable in such as spectroscopy studies, thin-film solar cells, etc. Conventionally, the dielectric gratings can be used to realize the enhanced diffraction, but the facets are usually rugged and optically thick (~μm). Plasmonic materials may exhibit unprecedented ability for manipulating light.

View Article and Find Full Text PDF

The coupling between surface plasmons and free electrons may be used to amplify waves or accelerate particles. Nonetheless, such an interaction is usually weak due to the small interaction length or velocity mismatching. Here a mechanism for enhancing the coupling between plasmonic fields and relativistic electrons is proposed.

View Article and Find Full Text PDF

The optical properties of a planar metamaterial with gammadion-shaped chiral symmetry breaking holes array have been investigated both theoretically and experimentally. The results indicate that the introduction of the chiral symmetry breaking causes the split of the transmission peak and exerts large influence on the optical rotation and circular dichroism. Our metamaterials might have potential applications in future design of plasmonic devices.

View Article and Find Full Text PDF

We report the transmission anomaly in a modified slit grating, which is dressed, on the slit sidewalls, with the linear chains of metal bumps. An asymmetric lineshape, which is characteristic of the Fano resonance, has been found in a narrow frequency range of the spectrum. The effect can be attributed to the interference between nonresonant background transmission and resonant plasmonic wave excitation in the linear chains.

View Article and Find Full Text PDF

We theoretically demonstrate the coupling between the unit cells and the interaction between constituents within each cell in metamaterials consisting of stacked split ring resonator arrays which are embedded in a homogeneous dielectric. It is found that the resonant frequency due to plasmon hybridization depends on the symmetry of resonance modes. Both for the first and third order plasmon resonances, we show that the resonances at lower frequency are not sensitive to the variation of lattice density, while the resonances at higher frequency rely on the coupling between cells due to the symmetric distribution of current.

View Article and Find Full Text PDF

The optical properties of a metal film perforated with coaxial elliptical hole arrays have been investigated experimentally and a simple analysis model that qualitatively explains the experimental results has been presented. In our structure, two localized excitations, i.e.

View Article and Find Full Text PDF

The optical properties of a plasmonic crystal composed of gold nanorod particles have been studied. Because of the strong coupling between the incident light and vibrations of free electrons, the long-wavelength optical properties such as the dielectric abnormality and polariton excitation etc., which were suggested originally in ionic crystals, can also be present in the plasmonic crystal.

View Article and Find Full Text PDF

Gold nanorod has generated great research interest due to its tunable longitudinal plasmon resonance. However, little progress has been made in the understanding of the effect. A major reason is that, except for the metallic spheres and ellipsoids, the interaction between light and nanoparticles is generally insoluble.

View Article and Find Full Text PDF

Recently, there has been an increased interest in studying extraordinary optical transmission (EOT) through subwavelength aperture arrays perforated in a metallic film. In this Letter, we report that the transmission of an incident acoustic wave through a one-dimensional acoustic grating can also be drastically enhanced. This extraordinary acoustic transmission (EAT) has been investigated both theoretically and experimentally, showing that the coupling between the diffractive wave and the wave-guide mode plays an important role in EAT.

View Article and Find Full Text PDF

The electro-optic effect can be employed to modulate the refractive index of an optical superlattice. In coupled quasi-phase matched processes, this modulation will introduce quasi-phase mismatches and result in energy redistribution among the optical waves. Numerical results indicate that an efficient third harmonic in a periodic or quasi-periodic superlattice can be achieved by varying the external dc electric field.

View Article and Find Full Text PDF

Propagation of electromagnetic waves in a piezoelectric superlattice is studied. Because of the piezoelectric effect, a coupling between two orthogonally polarized electromagnetic waves is induced by the superlattice vibration. As a consequence of the strong coupling, two types of polariton modes are found: one is supported in the band gap while the other prohibited.

View Article and Find Full Text PDF