Publications by authors named "Cheng-Pin Liang"

Synthetic molecular machines have received increasing attention because of their great ability to mimic natural biological motors and create novel modes of motion. However, very few examples have been implemented with real autonomous movement inside living cells, due to the challenges of the driving force and highly integrated system design. In this work, we report an elegant, highly integrated DNA nanomachine that can be powered by endogenous ATP molecules and autonomously operated inside living cells without any auxiliary additives.

View Article and Find Full Text PDF

We rationally engineered an elegant entropy-driven DNA nanomachine with three-dimensional track and applied it for intracellular miRNAs imaging. The proposed nanomachine is activated by target miRNA binding to drive a walking leg tethered to gold nanoparticle with a high density of DNA substrates. The autonomous and progressive walk on the DNA track via the entropy-driven catalytic reaction of intramolecular toehold-mediated strand migration leads to continuous disassembly of DNA substrates, accompanied by the recovery of fluorescence signal due to the specific release of a dye-labeled substrate from DNA track.

View Article and Find Full Text PDF