Publications by authors named "Cheng-Peng Niu"

The performance of covalent-organic frameworks (COFs) for the photocatalytic extraction of uranium is greatly limited by the number of adsorption sites. Herein, inspired by electronegative redox reactions, we designed a nitrogen-oxygen rich pyrazine connected COF (TQY-COF) with multiple redox sites as a platform for extracting uranium via combining superaffinity and enhanced photoinduction. The preorganized bisnitrogen-bisoxygen donor configuration on TQY-COF is entirely matched with the typical geometric coordination of hexavalent uranyl ions, which demonstrates high affinity (tetra-coordination).

View Article and Find Full Text PDF

The type of reactions and the availability of monomers for the synthesis of sp-c linked covalent organic frameworks (COFs) are considerably limited by the irreversibility of the C=C bond. Herein, inspired by the Claisen-Schmidt condensation reaction, two propenone-linked (C=C-C=O) COFs (named Py-DAB and PyN-DAB) are developed based on the base-catalyzed nucleophilic addition reaction of ketone-activated α-H with aromatic aldehydes. The introduction of propenone structure endows COFs with high crystallinity, excellent physicochemical stability, and intriguing optoelectronic properties.

View Article and Find Full Text PDF

The synthesis of ionic olefin linked three-dimensional covalent organic frameworks (3D COFs) is greatly challenging given the hardness of the formation of stable carbon-carbon double bonds (-C = C-). Herein, we report a general strategy for designing porous positively charged sp carbon-linked 3D COFs through the Aldol condensation promoted by quaternization. The obtained 3D COFs, namely TFPM-PZI and TAPM-PZI, showed impressive chemical stability.

View Article and Find Full Text PDF

It has been considered challenging to develop ideal adsorbents for efficient and lower adsorption time uranium extraction, especially 3D covalent organic frameworks with interpenetrating topologies and tunable porous structures. Here, a "soft" three-dimensional (3D) covalent organic framework (TAM-DHBD) with a fivefold interpenetrating structure is prepared as a novel porous platform for the efficient extraction of radioactive uranium. The resultant TAM-DHBD appears exceptional crystallinity, prominent porosity and excellent chemical stability.

View Article and Find Full Text PDF

Technetium (Tc) is a highly toxic radioactive nuclear wastewater contaminant. Real-time detection of Tc is very difficult due to its difficult-to-complex nature. Herein, a novel three-dimensional ionic olefin-linked conjugated microporous polymer (TFPM-EP-Br) is constructed using tetrakis(4-aldehyde phenyl)methane (TFPM) as the central monomer.

View Article and Find Full Text PDF

Uranium is a key element in the nuclear industry and also a global environmental contaminant with combined highly toxic and radioactive. Currently, the materials based on post-modification of amidoxime have been developed for uranium detection and adsorption. However, the affinity of amidoxime group for vanadium is stronger than that of uranium, which is the main challenge hindering the practical application of amidoxime-based adsorbents.

View Article and Find Full Text PDF