Publications by authors named "Cheng-Kai Wang"

The intestinal epithelium is highly regenerative. Rapidly proliferating LGR5 crypt base columnar (CBC) cells are responsible for epithelial turnover needed to maintain intestinal homeostasis. Upon tissue damage, loss of LGR5 CBCs can be compensated by activation of quiescent +4 intestinal stem cells (ISCs) or early progenitor cells to restore intestinal regeneration.

View Article and Find Full Text PDF

Unlabelled: Epithelial ovarian cancer is a highly heterogeneous and malignant female cancer with an overall low survival rate. Mutations in p53 are prevalent in the major ovarian cancer histotype, high-grade serous ovarian carcinoma (HGSOC), while p53 mutations are much less frequent in other ovarian cancer subtypes, particularly in ovarian clear cell carcinoma (OCCC). Advanced stage OCCC with wild-type (WT) p53 has a worse prognosis and increased drug resistance, metastasis, and recurrence than HGSOC.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) have important roles in regenerative medicine, but only a few studies have investigated the cytokines secreted by hESCs. We screened and identified chemokine (C-X-C motif) ligand 14 (CXCL14), which plays crucial roles in hESC renewal. CXCL14, a C-X-C motif chemokine, is also named as breast and kidney-expressed chemokine (BRAK), B cell and monocyte-activated chemokine (BMAC), and macrophage inflammatory protein-2γ (MIP-2γ).

View Article and Find Full Text PDF

We reveal by high-throughput screening that activating transcription factor 1 (ATF1) is a novel pluripotent regulator in human embryonic stem cells (hESCs). The knockdown of ATF1 expression significantly up-regulated neuroectoderm (NE) genes but not mesoderm, endoderm, and trophectoderm genes. Of note, down-regulation or knockout of ATF1 with short hairpin RNA (shRNA), small interfering RNA (siRNA), or clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) was sufficient to up-regulate sex-determining region Y-box (SOX)2 and paired box 6 (PAX6) expression under the undifferentiated or differentiated conditions, whereas overexpression of ATF1 suppressed NE differentiation.

View Article and Find Full Text PDF

Glutathione (GSH), the major non-enzymatic antioxidant, plays a critical role in cellular reactive oxygen species (ROS) neutralization. Moreover, GSH is required for the self-renewal maintenance of human embryonic stem cells (hESCs), and is highly accumulated in undifferentiated cells. Among 8 GSH biosynthesis-related enzymes, we found CHAC2 is highly enriched in undifferentiated hESCs.

View Article and Find Full Text PDF

An important safety concern in the use of human pluripotent stem cells (hPSCs) is tumorigenic risk, because these cells can form teratomas after an in vivo injection at ectopic sites. Several thousands of undifferentiated hPSCs are sufficient to induce teratomas in a mouse model. Thus, it is critical to remove all residue-undifferentiated hPSCs that have teratoma potential before the clinical application of hPSC-derived cells.

View Article and Find Full Text PDF

We propose and demonstrate a facile approach for ultraviolet-visible broadband generation from a sapphire crystal core-borosilicate glass cladding hybrid fiber using a laser-heated pedestal growth technique. Considerable formation of F- and F(2)-type color emitters is effectively facilitated by Ti(4+) ions and Al(3+) vacancies, retaining efficient luminescence and high crystallinity of the sapphire core. These color centers intensify the ultraviolet, blue, and green emissions at 370, 450, and 540 nm, whereas the 650-nm red emission is contributed by Cr(3+) in the octahedral sites of the corundum structure.

View Article and Find Full Text PDF