Publications by authors named "Cheng-Hui Chang"

Purpose: To develop a combination treatment consisting of combretastatin A-4-phosphate (CA4P) with radiation based on tumor oxygenation status.

Methods And Materials: In vivo near-infrared spectroscopy (NIRS) and diffusion-weighted (DW) magnetic resonance imaging (MRI) were applied to noninvasively monitor changes in tumor blood oxygenation and necrosis induced by CA4P (30 mg/kg) in rat mammary 13762NF adenocarcinoma, and the evidence was used to optimize combinations of CA4P and radiation treatment (a single dose of 5 Gy).

Results: NIRS showed decreasing concentrations of tumor vascular oxyhemoglobin and total hemoglobin during the first 2 h after CA4P treatment, indicating significant reductions in tumor blood oxygenation and perfusion levels (p < 0.

View Article and Find Full Text PDF

The aim of this study is to compare the dosimetric characteristics of robotic and conventional linac-based SBRT techniques for lung cancer, and to provide planning guidance for each modality. Eight patients who received linac-based SBRT were retrospectively included in this study. A dose of 60 Gy given in three fractions was prescribed to each target.

View Article and Find Full Text PDF

Purpose: To investigate the application of pretreatment oxygenation to the AT1 subline of the Dunning R3327 prostate tumor, which is more hypoxic and faster growing than the H1 subline previously studied.

Methods And Materials: Dunning prostate R3327-AT1 tumors growing on Copenhagen rats were administered 30 Gy of X-ray radiation either with or without oxygen inhalation. Tumor oxygenation was sampled by (19)F nuclear magnetic resonance echo planar imaging relaxometry of the reporter molecule hexafluorobenzene, no more than 24 h before irradiation.

View Article and Find Full Text PDF

Objectives: Stereotactic body radiation therapy (SBRT) is a new therapeutic paradigm that uses a very large dose per fraction treatments (ablative hypofractionation). We investigated the use of ablative hypofractionation in treating human renal cell carcinoma using a nude mouse model.

Methods: Nude mice were injected subcutaneously with A498 human renal carcinoma cells.

View Article and Find Full Text PDF

Purpose: SBRT is a new therapeutic paradigm using large dose per fraction treatments (aggressive hypofractionation). While SBRT has shown efficacy for treating patients with lung, liver and spine tumors, to our knowledge there have been no preclinical studies evaluating the efficacy of this treatment for prostate cancer. We investigated the dose-response characteristics of SBRT for treating human prostate cancer in a nude mouse model.

View Article and Find Full Text PDF

Our previous studies have shown that oxygen inhalation significantly reduces tumor hypoxia in the moderately well-differentiated HI subline of the Dunning prostate R3327 rat carcinoma. To test our hypothesis that modifying hypoxia could improve the radiosensitivity of these tumors, we performed experimental radiotherapy to compare the tumor response to ionizing radiation alone or in combination with oxygen inhalation. Tumor pO(2) measurements were performed on size-selected tumors several hours before radiotherapy using (19)F nuclear magnetic resonance echo planar imaging relaxometry (FREDOM) of the reporter molecule hexafluorobenzene.

View Article and Find Full Text PDF