Spinocerebellar ataxia type 22 (SCA22) caused by KCND3 mutations is an autosomal dominant disorder. We established a mouse model carrying the Kcnd3 F227del mutation to study the molecular pathogenesis. Four findings were pinpointed.
View Article and Find Full Text PDFAtopic dermatitis is featured with impaired skin barrier. The stratum corneum and the intercellular tight junctions constitute the permeability barrier, which is essential to protect water loss in the host and prevent pathogen entry. The epidermal barrier is constantly renewed by differentiating keratinocytes through cornification, during which autophagy contributes to elimination of organelles and nucleus.
View Article and Find Full Text PDFBackground: The human CISD2 gene is located within a longevity region mapped on chromosome 4q. In mice, Cisd2 levels decrease during natural aging and genetic studies have shown that a high level of Cisd2 prolongs mouse lifespan and healthspan. Here, we evaluate the feasibility of using a Cisd2 activator as an effective way of delaying aging.
View Article and Find Full Text PDFBackground: Age-related changes affecting the ocular surface cause vision loss in the elderly. Cisd2 deficiency drives premature aging in mice as well as resulting in various ocular surface abnormalities. Here we investigate the role of CISD2 in corneal health and disease.
View Article and Find Full Text PDFCDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for the disease Wolfram syndrome 2 (WFS2; MIM 604928), which is an autosomal recessive disorder showing metabolic and neurodegenerative manifestations. CISD2 protein can be localized on the endoplasmic reticulum (ER), outer mitochondrial membrane (OMM) and mitochondria-associated membrane (MAM). CISD2 plays a crucial role in the regulation of cytosolic Ca homeostasis, ER integrity and mitochondrial function.
View Article and Find Full Text PDFThe ageing of human populations has become a problem throughout the world. In this context, increasing the healthy lifespan of individuals has become an important target for medical research and governments. Cardiac disease remains the leading cause of morbidity and mortality in ageing populations and results in significant increases in healthcare costs.
View Article and Find Full Text PDFCDGSH iron-sulfur domain-containing protein 2 (Cisd2), a protein that declines in an age-dependent manner, mediates lifespan in mammals. Cisd2 deficiency causes accelerated aging and shortened lifespan, whereas persistent expression of Cisd2 promotes longevity in mice. Alzheimer's disease (AD) is the most prevalent form of senile dementia and is without an effective therapeutic strategy.
View Article and Find Full Text PDFMutations in lamin A (LMNA) are responsible for a variety of human dystrophic and metabolic diseases. Here, we created a mouse model in which progerin, the lamin A mutant protein that causes Hutchinson-Gilford progeria syndrome (HGPS), can be inducibly overexpressed. Muscle-specific overexpression of progerin was sufficient to induce muscular dystrophy and alter whole-body energy expenditure, leading to premature death.
View Article and Find Full Text PDFCDGSH iron-sulfur domain-containing protein 2 (Cisd2) is pivotal to mitochondrial integrity and intracellular Ca2+ homeostasis. In the heart of Cisd2 knockout mice, Cisd2 deficiency causes intercalated disc defects and leads to degeneration of the mitochondria and sarcomeres, thereby impairing its electromechanical functioning. Furthermore, Cisd2 deficiency disrupts Ca2+ homeostasis via dysregulation of sarco/endoplasmic reticulum Ca2+-ATPase (Serca2a) activity, resulting in an increased level of basal cytosolic Ca2+ and mitochondrial Ca2+ overload in cardiomyocytes.
View Article and Find Full Text PDFSkeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast-twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood.
View Article and Find Full Text PDFCISD2 is located within the chromosome 4q region frequently deleted in hepatocellular carcinoma (HCC). Mice with Cisd2 heterozygous deficiency develop a phenotype similar to the clinical manifestation of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Cisd2 haploinsufficiency causes a low incidence (20%) of spontaneous HCC and promotes HBV-associated and DEN-induced HCC; conversely, 2-fold overexpression of Cisd2 suppresses HCC in these models.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the most common form of liver cancer and has a poor prognosis and a low survival rate; its incidence is on the rise. Hepatitis B virus (HBV) infection is one of the main causes of HCC. A high prevalence of pre-S deletions of HBV surface antigen, which encompass T-cell and/or B-cell epitopes, is found in HBV carriers; antiviral therapy and viral immune escape may cause and select for these HBV mutants.
View Article and Find Full Text PDFThe multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC.
View Article and Find Full Text PDFIn the ovary, the paracrine interactions between the oocyte and surrounded granulosa cells are critical for optimal oocyte quality and embryonic development. Mice lacking the androgen receptor (AR⁻/⁻) were noted to have reduced fertility with abnormal ovarian function that might involve the promotion of preantral follicle growth and prevention of follicular atresia. However, the detailed mechanism of how AR in granulosa cells exerts its effects on oocyte quality is poorly understood.
View Article and Find Full Text PDFCISD2 is a causative gene associated with Wolfram syndrome (WFS). However, it remains a mystery as to how the loss of CISD2 causes metabolic defects in patients with WFS. Investigation on the role played by Cisd2 in specific cell types may help us to resolve these underlying mechanisms.
View Article and Find Full Text PDFAutophagy and endoplasmic reticulum (ER) stress response is important for cancer cells to maintain malignancy and resistance to therapy. trans-Resveratrol (RSV), a non-flavonoid agent, has been shown to induce apoptosis in human nasopharyngeal carcinoma (NPC) cells. In this study, the involvements of tumor-specific ER stress and autophagy in the RSV-mediated apoptosis were investigated.
View Article and Find Full Text PDFThe CISD2 gene, which is an evolutionarily conserved novel gene, encodes a transmembrane protein primarily associated with the mitochondrial outer membrane. Significantly, the CISD2 gene is located within the candidate region on chromosome 4q where a genetic component for human longevity has been mapped. Previously, we have shown that Cisd2 deficiency shortens lifespan resulting in premature aging in mice.
View Article and Find Full Text PDFResveratrol is a natural polyphenol that has beneficial effects across species and various disease models. Here, we investigate whether resveratrol is effective against hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) using HBV X protein (HBx) transgenic mice. We found that resveratrol (30 mg/kg/d) has a therapeutic effect on HBx-induced fatty liver and the early stages of liver damage.
View Article and Find Full Text PDFUnlabelled: The liver architecture plays an important role in maintaining hemodynamic balance, but the mechanisms that underlie this role are not fully understood. Hepsin, a type II transmembrane serine protease, is predominantly expressed in the liver, but has no known physiological functions. Here, we report that hemodynamic balance in the liver is regulated through hepsin.
View Article and Find Full Text PDFBackground: Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.
View Article and Find Full Text PDFAging, which affects all organ systems, is one of the most complex phenotypes. Recent discoveries in long-lived mutant mice have revealed molecular mechanisms of longevity in mammals which may contribute to our understanding of why humans age. These mutations include naturally occurring spontaneous mutations, and those of mice genetically modified by modern genomic technologies.
View Article and Find Full Text PDFCISD2, the causative gene for Wolfram syndrome 2 (WFS2), is an evolutionarily conserved novel gene. Recently, we have demonstrated that CISD2 is involved in mammalian lifespan control; this work also establishes WFS2 as a mitochondria-mediated disorder and effectively links CISD2 gene function, mitochondrial integrity, and aging in mammals. In wild-type mice, the expression levels of CISD2 decrease in an age-dependent manner during the naturally aging process; this correlates with mitochondrial breakdown and parallels the development of an aged phenotype.
View Article and Find Full Text PDFCISD2, the causative gene for Wolfram syndrome 2 (WFS2), is a previously uncharacterized novel gene. Using a mouse genetic approach, this work demonstrated for the first time that Cisd2 is involved in mammalian life span control. Cisd2 deficiency in mice leads to mitochondrial breakdown and dysfunction; this is accompanied by cell death with autophagic features and these events precede the two earliest manifestations of nerve and muscle degeneration.
View Article and Find Full Text PDFCISD2, the causative gene for Wolfram syndrome 2 (WFS2), is a previously uncharacterized novel gene. Significantly, the CISD2 gene is located on human chromosome 4q, where a genetic component for longevity maps. Here we show for the first time that CISD2 is involved in mammalian life-span control.
View Article and Find Full Text PDF