Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (T) cells and PD-1 inhibitors (aPD-1).
View Article and Find Full Text PDFPhotothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM).
View Article and Find Full Text PDFThe clinical application of cancer immunotherapy is unsatisfied due to low response rates and systemic immune-related adverse events. Microwave hyperthermia can be used as a synergistic immunotherapy to amplify the antitumor effect. Herein, we designed a Gd-based metal-organic framework (Gd-MOF) nanosystem for MRI-guided thermotherapy and synergistic immunotherapy, which featured high performance in drug loading and tumor tissue penetration.
View Article and Find Full Text PDFIn recent years, the use of active substances as excipients or as substitutes for other excipients in the design of modern drug delivery systems has received widespread attention, which has promoted the development of the theory of unification of medicines and excipients in the design of traditional Chinese medicine(TCM) preparations. Adopting the theory of unification of medicines and excipients to design drug delivery systems can reduce the use of excipients and thus the cost of preparations, reduce drug toxicity, increase drug solubility and biocompatibility, enhance synergistic effect, and realize targeted delivery and simultaneous delivery of multiple components. However, the research on the application of this theory in the modern drug delivery system of TCM preparations is still insufficient, with few relevant articles.
View Article and Find Full Text PDFOral disease, as a class of diseases with very high morbidity, brings great physical and mental damage to people worldwide. The increasing burden and strain on individuals and society make oral diseases an urgent global health problem. Since the treatment of almost all oral diseases relies on materials, the rapid development of advanced materials and technologies has also promoted innovations in the treatment methods and strategies of oral diseases.
View Article and Find Full Text PDFNeuritin, a new member of the neurotrophic factor family, plays an important role in promoting neuronal survival, differentiation, function, and repair. However, whether neuritin is expressed in human astrocytoma and involved in their proliferation, apoptosis, and angiogenesis remains unclear. The expression of neuritin messenger RNA, protein and the relationship with proliferation, apoptosis, and angiogenesis were examined in human astrocytoma samples and three glioma cell lines by immunohistochemistry, Western blot, and quantitative real-time RT-PCR and so on.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
January 2010
Laser Raman spectroscopy was employed to characterize the microstructure variations of polyacrylonitrile-based carbon fibers during electrochemical treatment, and the characteristics of first-order Raman spectra of carbon fibers with different treatment time were investigated in the present paper. The results indicate that the Raman spectra of the carbon fibers can be fitted into four bands, named as D (or D1) band, G band, D2 band and D3 band, respectively. The Raman parameters to characterize surface microstructure variations of carbon fibers mainly include R(I(D2)) / I(G), area ratio of D band and G band), I(D2) / I(G) (area ratio of D2 band and G band), I(D3) / I(G) (area ratio of D3 band and G band), and I(D(S))/ I(G) (area ratio of all the disordered structure and G band).
View Article and Find Full Text PDFDifferent types of C/C composites were prepared by conventional molding, and the changes in normal spectral emissivity of samples were tested. The testing results show that spectral emissivity of C/C composite reinforced by short cut carbon fibers is generally higher than the sample reinforced by carbon cloth in the entire 2500-13000nm wavelength region. The structure of short cut carbon fibers is relatively loose and the number of material particles is less than other samples in unit volume, which increases the penetration depth of electromagnetic waves.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
December 2008
Laser Raman spectroscopy was employed to characterize the microstructure changes of PAN based carbon fibers among different surface treatments, and the characteristics of first-order Raman spectra of carbon fibers during surface treatment were investigated in the present paper. The results show that the variety of carbon fibers' phase structures can be represented by Raman spectroscopy parameters, such as the Raman frequency shifts of main D and G bands, FWHMs and additive bands' area ratios at the positions of different Raman frequency shifts. During different surface treatment, some changes in the first-order Raman spectroscopy parameters of PAN based carbon fibers were observed, the Raman frequency shifts of D and G bands moved toward higher wavenumber, and the values of R(I(D)/I(G)) also improved, which can be used to measure the graphite crystallite size of carbon fiber.
View Article and Find Full Text PDFHigh molecular weight powdery polyacrylonitrile (PAN) polymers were prepared by aqueous suspension polymerization employing itaconic acid (IA) as comonomer and alpha,alpha(')-azobisisobutyronitrile (AIBN) as initiator at 60 degrees C. PAN polymers obtained with different monomer ratios were characterized by EA, DSC, FTIR and XRD. It is investigated that the oxygen element content in PAN polymers increased with the increase of required IA amounts in the feed and heat-treatment temperatures.
View Article and Find Full Text PDFTiN nanocrystals were successfully prepared through the direct reaction between TiCl(4) and NaNH(2) induced at 300 degrees C. The yield based on Ti is approximately 80%. X-ray powder diffraction indicated that the product was cubic TiN with a lattice constant of a = 4.
View Article and Find Full Text PDF