Publications by authors named "Cheng-Gen Qian"

Nanozymes as artificial enzymes that mimicked natural enzyme-like activities have received great attention in cancer diagnosis and therapy. Biomimetic nanozymes require more consideration regarding complicated tumor microenvironments to mimic biological enzymes, thus achieving superior nanozyme activity in vivo. Here we report a biomimetic hybrid nanozyme (named rMGB) which integrates natural enzyme glucose oxidase (GOx) with nanozyme manganese dioxide (MnO) by mutual promotion for maximizing the enzymatic activity of MnO and GOx.

View Article and Find Full Text PDF

A multimodal cancer therapeutic nanoplatform is reported. It demonstrates a promising approach to synergistically regulating the tumor microenvironment. The combination of intracellular reactive oxygen species (ROS) generated by irradiation of photosensitizer and endoplasmic reticulum (ER) stress induced by 2-deoxy-glucose (2-DG) has a profound effect on necrotic or apoptotic cell death.

View Article and Find Full Text PDF

Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease.

View Article and Find Full Text PDF

Conjugated polymer nanomaterials (CPNs), as optically and electronically active materials, hold promise for biomedical imaging and drug delivery applications. This review highlights the recent advances in the utilization of CPNs in theranostics. Specifically, CPN-based in vivo imaging techniques, including near-infrared (NIR) imaging, two-photon (TP) imaging, photoacoustic (PA) imaging, and multimodal (MM) imaging, are introduced.

View Article and Find Full Text PDF

Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion.

View Article and Find Full Text PDF

Nanoscale materials are now attracting a great deal of attention for biomedical applications. Conjugated polymer nanoparticles have remarkable photophysical properties that make them highly advantageous for biological fluorescence imaging. We report on conjugated polymer nanoparticles with phenylboronic acid tags on the surface for fluorescence detection of neurotransmitter dopamine in both living PC12 cells and brain of zebrafish larvae.

View Article and Find Full Text PDF

A multifunctional nanocarrier for encapsulation and delivery of short interfering RNA (siRNA) has been realized using cationic fluorescent polymer core-shell nanoparticles. The nanocarrier has good biocompatibility and high transfection efficiency over the most popular transfection reagent, Lipofectamine 2000. Fluorescence resonance energy transfer within the nanocarrier provides a non-invasive and label-free method to track the intracellular release of siRNA.

View Article and Find Full Text PDF

Dextran modified with pendant acetals is used to load doxorubicin (DOX) and a near-infrared-emissive conjugated polymer (BTTPF), and this aims to provide selective drug release at therapeutic targets including tumors. The BTTPF is applicable to tracking the anticancer drug release through the change of Förster resonance energy transfer efficiency between doxorubicin and BTTPF during degradation of the nanoparticles in vivo.

View Article and Find Full Text PDF