Publications by authors named "Cheng-Fen Tu"

Background: The adverse effects of sepsis-associated acute kidney injury (SA-AKI) highlight the need for new biomarkers. Signal Peptide-Complement C1r/C1s, Uegf, Bmp1-Epidermal Growth Factor-like Domain-Containing Protein 2 (SCUBE2), important for angiogenesis and endothelial integrity, has been linked to increased mortality in models of lipopolysaccharide-induced lung injury. This research aimed to assess the utility of plasma SCUBE2 levels as a prognostic indicator for SA-AKI in intensive care unit (ICU) patients.

View Article and Find Full Text PDF

PhoSL (Pholiota squarrosa Lectin) has an exceptional binding affinity for biomolecules with core-fucosylated N-glycans. This modification involves the addition of fucose to the inner N-acetylglucosamine within the N-glycan structure and is known to influence many physiological processes. Nevertheless, the molecular interactions underlying high-affinity binding of native PhoSL to core-fucosylated N-glycans remain largely unknown.

View Article and Find Full Text PDF

A hallmark of mixed lineage leukemia gene-rearranged (MLL-r) acute myeloid leukemia that offers an opportunity for targeted therapy is addiction to protein tyrosine kinase signaling. One such signal is the receptor tyrosine kinase Fms-like receptor tyrosine kinase 3 (FLT3) upregulated by cooperation of the transcription factors homeobox A9 (HOXA9) and Meis homeobox 1 (MEIS1). Signal peptide-CUB-EGF-like repeat-containing protein (SCUBE) family proteins have previously been shown to act as a co-receptor for augmenting signaling activity of a receptor tyrosine kinase (e.

View Article and Find Full Text PDF

Background: We recently showed that fucosyltransferase 8 (FUT8)-mediated core fucosylation of transforming growth factor-β receptor enhances its signaling and promotes breast cancer invasion and metastasis. However, the complete FUT8 target glycoproteins and their downstream signaling networks critical for breast cancer progression remain largely unknown.

Method: We performed quantitative glycoproteomics with two highly invasive breast cancer cell lines to unravel a comprehensive list of core-fucosylated glycoproteins by comparison to parental wild-type and FUT8-knockout counterpart cells.

View Article and Find Full Text PDF

The emergence of castration-resistance is one of the major challenges in the management of patients with advanced prostate cancer. Although the spectrum of systemic therapies that are available for use alongside androgen deprivation for treatment of castration-resistant prostate cancer (CRPC) is expanding, none of these regimens are curative. Therefore, it is imperative to apply systems approaches to identify and understand the mechanisms that contribute to the development of CRPC.

View Article and Find Full Text PDF

Background: Core fucosylation (addition of fucose in α-1,6-linkage to core N-acetylglucosamine of N-glycans) catalyzed by fucosyltransferase 8 (FUT8) is critical for signaling receptors involved in many physiological and pathological processes such as cell growth, adhesion, and tumor metastasis. Transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT) regulates the invasion and metastasis of breast tumors. However, whether receptor core fucosylation affects TGF-β signaling during breast cancer progression remains largely unknown.

View Article and Find Full Text PDF

SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear.

View Article and Find Full Text PDF

Objective: Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE1), a secreted and surface-exposed glycoprotein on activated platelets, promotes platelet-platelet interaction and supports platelet-matrix adhesion. Its plasma level is a biomarker of platelet activation in acute thrombotic diseases. However, the exact roles of plasma SCUBE1 in vivo remain undefined.

View Article and Find Full Text PDF

scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF domain-containing protein 1), the founding member of a novel secreted and cell surface SCUBE protein family, is expressed predominantly in various developing tissues in mice. However, its function in primitive hematopoiesis remains unknown. In this study, we identified and characterized zebrafish scube1 and analyzed its function by injecting antisense morpholino-oligonucleotide into embryos.

View Article and Find Full Text PDF

Background: Tyrosine kinase inhibitor gefitinib is effective against lung cancer cells carrying mutant epidermal growth factor receptor (EGFR); however, it is not effective against lung cancer carrying normal EGFR. The breaking of immune tolerance against self epidermal growth factor receptor with active immunization may be a useful approach for the treatment of EGFR-positive lung tumors. Xenogeneic EGFR gene was demonstrated to induce antigen-specific immune response against EGFR-expressing tumor with intramuscular administration.

View Article and Find Full Text PDF

Objectives: This study investigates the potential application of plasma SCUBE1 [signal peptide-CUB (complement C1r/C1s, Uegf, and Bmp1)-EGF (epidermal growth factor)-like domain-containing protein 1] as a biomarker of platelet activation in acute coronary syndrome (ACS) and acute ischemic stroke (AIS).

Background: Platelet activation plays a crucial role in ACS and AIS. Platelet stimulation is associated with increased plasma concentration of SCUBE1, a novel platelet-endothelial secreted protein identified in our previous study.

View Article and Find Full Text PDF

SCUBE1 (signal peptide-CUB-EGF domain-containing protein 1) is a novel, secreted, cell surface glycoprotein expressed during early embryogenesis and found in platelet and endothelial cells. This protein is composed of an N-terminal signal peptide sequence followed by nine tandemly arranged epidermal growth factor (EGF)-like repeats, a spacer region, three cysteine-rich repeat motifs, and one CUB domain at the C terminus. However, little is known about its domain and biological function.

View Article and Find Full Text PDF

DNA vaccine represents a novel method to elicit immunity against infectious disease. Lipopolysaccharide (LPS) copurified with plasmid DNA may affect therapeutic efficacy and immunological response. We aimed to study the effect of LPS on the therapeutic efficacy of HER-2/neu DNA vaccine in a mouse tumor animal model.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate in a transgenic animal model the cardiac expression and function of a novel extracellular protein SCUBE3 [signal peptide-CUB (complement proteins C1r/C1s, Uegf, and Bmp1)-EGF (epidermal growth factor)-like domain-containing protein 3].

Methods And Results: Real-time quantitative reverse transcriptase (RT)-PCR analysis showed that SCUBE3 is expressed in the ventricular myocardium. Male transgenic (TG) mice overexpressing SCUBE3 appeared normal during development, from birth to adulthood.

View Article and Find Full Text PDF

Geldanamycin (GA), a heat-shock protein (HSP) 90 inhibitor, induces degradation of HSP90 client proteins, which may promote the presentation of degradation peptides with major histocompatibility complex class I on cancer cells. We hypothesized that GA may enhance the efficacy of DNA vaccination, and investigated the therapeutic effect of the combination of GA and a DNA vaccine against HSP90 clients p185(neu) and Met. The efficacy of various doses of GA combined with an N-terminal neu (N'-neu) DNA vaccine was investigated in a transplanted tumor constitutively overexpressing endogenous p185(neu).

View Article and Find Full Text PDF

We examined the therapeutic efficacy of xenogenic human N'-terminal neu DNA vaccine and autologous mouse N'-terminal neu DNA vaccine on MBT-2 tumor cells in C3H mice. Intramuscular injection of xenogenic and autologous neu DNA vaccines produced comparable therapeutic efficacies. Mouse and human N'-neu DNA vaccine induced tumor infiltration of CD8(+) T cells, while the human vaccine was less effective at stimulating natural killer cells.

View Article and Find Full Text PDF

We recently identified a novel testis-enriched receptor guanylyl cyclase (GC) in the mouse, designated mGC-G. To further investigate its protein expression and function, we generated a neutralizing antibody specifically against the extracellular domain of this receptor. RT-PCR and immunohistochemical analyses show that mGC-G is predominantly expressed from round spermatids to spermatozoa in mouse testis at both the mRNA and protein levels.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a novel protein called SCUBE1, which is found primarily in the vascular system and is associated with platelets and thrombus formation.
  • Immunohistochemical and quantitative real-time RT-PCR methods revealed SCUBE1 expression in human platelets, showing that it is stored in alpha-granules and is released upon stimulation.
  • The findings suggest that SCUBE1 acts as an adhesive molecule in cardiovascular biology and may have important roles in both normal and pathological processes, particularly regarding atherosclerosis and platelet function.
View Article and Find Full Text PDF

The therapeutic efficacy of HER2/c-erbB-2/neu DNA immunization on mouse tumor cells expressing exogenous human or rat p185neu but not on mouse tumor cells naturally expressing mouse p185neu has been demonstrated. We investigated the feasibility of using N-terminal rat neu DNA immunization on mouse tumor overexpressing endogenous p185neu and enhancing the therapeutic efficacy of this vaccine by fusion to various cytokine genes, including interleukin-2 (IL-2), interleukin-4 (IL-4), or granulocyte-macrophage colony-stimulating factor. In a therapeutic model, N'-neu-IL-2 DNA vaccine was significantly better than N'-neu DNA vaccine, and N'-neu DNA vaccine was significantly better than control DNA or N'-neu-IL-4 DNA vaccine.

View Article and Find Full Text PDF