To understand leaf litter stoichiometry in a subtropical evergreen broadleaved forest, we measured the contents of carbon (C), nitrogen (N) and phosphorus (P) in leaf litters of 62 main woody species in a natural forest of Nature Reserve in Sanming, Fujian Province. Differences in leaf litter stoichiometry were analyzed across leaf forms (evergreen, deciduous), life forms (tree, semi-tree or shrub), and main families. Additionally, the phylogenetic signal was measured by Blomberg's to explore the correlation between family level differentiation time and litter stoichiometry.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2022
At the regional scale, substrate properties are the key factors driving litter decomposition rate. In this study, soil temperature was increased by buried heating cables to explore the impacts of climate warming on the physical and chemical properties in branch and leaf of litter. The results showed that after 5 years of soil warming (4 ℃), the contents of nitrogen (N), phosphorus (P) and water-soluble substance in branch litter increased by 35.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
February 2022
To understand the impacts of mid-subtropical forest conversion on carbon and nutrient cycling, we conducted a 4-year investigation to examine litterfall, nutrient return and nutrient use efficiency of natural forest, secondary forest and plantation which were transformed from natural forest. The results showed that after natural forest was transformed into secon-dary forest and plantation, the annual litter production decreased by 29.0% and 45.
View Article and Find Full Text PDFControl of organic matter, nutrients and disinfection byproduct formation is a major challenge for the drinking water treatment plants on Matsu Islands, Taiwan, receiving source water from the eutrophic reservoirs. A pilot entrapped biomass reactor (EBR) system was installed as the pretreatment process to reduce organic and nitrogen contents into the drinking water treatment plant. The effects of hydraulic retention time (HRT) and combination of preceding physical treatment (ultraviolet and ultrasound) on the treatment performance were further evaluated.
View Article and Find Full Text PDFAnaerobic processes have been applied to treat low-strength domestic wastewaters with significant energy saving. However, anaerobic process effluents must be further removed of residual organics and total nitrogen before discharge. Reported here are an aerobic entrapped bio-technology (EBT) system and an EBT coupled with activated sludge (EBT + AS) system being tested as a post-anaerobic treatment.
View Article and Find Full Text PDFThe effects of interference intensity on soil respiration (R) and heterotrophic respiration (R) were studied in two Castanopsis carlesii forests with artificially assisted regeneration. The results showed that C. carlesii forest decreased the R and its components with the increasing interfe-rence intensity, particularly decreased its autotrophic respiration (R, 1.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA) is an important perfluorinated chemical of significant environmental concern. It has been widely found at high concentrations in the environment. We have exposed sediment constituent minerals SiO2, Fe2O3, and Al2O3 to PFOA and humic acid (HA) and studied the adsorption of PFOA by introducing the adsorbates in different orders.
View Article and Find Full Text PDFThis study investigated the photocatalytic degradation of codeine by UV-irradiated TiO2. The degradation kinetics was determined under varied conditions including the TiO2 loading, codeine concentration, and pH. Codeine and several reaction intermediates including morphine were identified and tracked during degradation using HPLC/MS-MS technique, along with TOC and IC measurements.
View Article and Find Full Text PDFMethamphetamine (MAT) is a prescription drug and often a substance of abuse. It is found in WWTP influents and effluents as well as surface waters in many regions, elevating concerns about their potential impact. MAT is not effectively removed by conventional processes of domestic wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFAs gradual increases in atmospheric CO2 and depletion of fossil fuels have raised considerable public concern in recent decades, utilizing the unlimited solar energy to convert CO2 to fuels (e.g., formic acid and methanol) apparently could simultaneously resolve these issues for sustainable development.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
May 2014
Unlabelled: Graphene-TiO2 was obtained by reduction of graphite oxide by the hydrothermal method. Using photocatalytic activity to reduce carbon dioxide to methanol and formic acid was investigated in this study. The results show that the graphene loading affects the absorption of light in the visible light region.
View Article and Find Full Text PDFThe aim of present study was to treat municipal wastewater in two-stage anaerobic fluidized membrane bioreactor (AFMBR) (anaerobic fluidized bed reactor (AFBR) followed by AFMBR) using granular activated carbon (GAC) as carrier medium in both stages. Approximately 95% COD removal efficiency could be obtained when the two-stage AFMBR was operated at total HRT of 5h (2h for AFBR and 3h for AFMBR) and influent COD concentration of 250mg/L. About 67% COD and 99% TSS removal efficiency could be achieved by the system treating the effluent from primary clarifier of municipal wastewater treatment plant, at HRT of 1.
View Article and Find Full Text PDFThis study presented a method to upgrade existing aeration tanks to remove total nitrogen (TN). Bioplates carrying entrapped biomass were installed in an aeration basin to create anoxic/anaerobic zones where denitrification can proceed. In a reactor that coupled bioplates containing entrapped biomass (equivalent to as high as 7,500 mg/L of biomass) and an activated sludge suspension (at mixed liquor suspended solids of 1,300-2,400 mg/L), nitrification efficiency exceeded 95% for an influent wastewater containing 21-54 mg/L of NH3-N.
View Article and Find Full Text PDFThis study employed entrapped biomass technology to augment the conventional activated sludge process with anoxic-oxic (AO)/anaerobic-anoxic-oxic (A20) functions for the removal of total nitrogen (TN) from wastewater of a science and industrial park in Taiwan. The entrapped biomass unit was fabricated in the format of carrier plates on which microbial cells were entrapped. Due to mass transport limitations, anoxic and anaerobic conditions were created within the bioplates that enabled denitrification to occur.
View Article and Find Full Text PDFA modeling study of the Danshui River, Taiwan, reveals that in-stream BOD deoxygenation rates vary significantly along the river as a result of the highly variable strength of wastewater discharges, which directly reflect the effluent characteristics. A comprehensive field data gathering and lab analysis effort for the study site is presented. Results of the data analyses yielded spatially variable CBOD deoxygenation and nitrification rates, which were incorporated in a model of the river.
View Article and Find Full Text PDFIt is easy to measure energy consumption with a power meter. However, energy savings cannot be directly computed by the powers measured using existing power meter technologies, since the power consumption only reflects parts of the real energy flows. The International Performance Measurement and Verification Protocol (IPMVP) was proposed by the Efficiency Valuation Organization (EVO) to quantify energy savings using four different methodologies of A, B, C and D.
View Article and Find Full Text PDFPhotocatalytic degradation of malathion, is investigated using Titanium Nanotubes (TNT) and Pt modified TNT (Pt-TNT) photocatalyst in an aqueous solution under 365 nm UV lamp irradiation. The TNT photocatalyst is prepared on pretreated strong alkaline solution via the hydrothermal method. The Pt-TNT was prepared by light deposition.
View Article and Find Full Text PDFReservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan.
View Article and Find Full Text PDFThe generation of a large volume of activated sludge (AS) from wastewater treatment has increasingly become a great burden on the environment. Anaerobic digestion is routinely practiced for excess waste sludge; however, the process retention time is long because of kinetic limitation in the hydrolysis step. We tested the feasibility of applying ozone in pressure cycles to enhance the disintegration and solubilization of AS with the goal to prepare them for digestion using reduced ozone dose and contact time.
View Article and Find Full Text PDFEnviron Technol
October 2011
Valence copper was recovered from wastewater by chemical reduction and use of a high gradient magnetic separation (HGMS) system. Ammonia (NH3) and sodium dithionate (Na2S2O4) at a molar ratio of [Cu]:[NH3]:[Na2S2O4] = 1:4:3 at pH = 9.5 were used first to chemically reduce copper ion to metallic copper; the resultant metal solids were captured in an upflowing reactor space equipped with a permalloy matrix net under a high gradient magnetic field.
View Article and Find Full Text PDFThe sorption and biodegradation of three sulfonamide antibiotics, namely sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), in an activated sludge system were investigated. Experiments were carried out by contacting 100 μg/L of each sulfonamide compound individually with 2.56 g/L of MLSS at 25±0.
View Article and Find Full Text PDFThe recovery of metals from waste effluents is necessary for pollution prevention and sustainable practice. High gradient magnetic separation (HGMS) is seen as a viable method. We investigated the capture of valence copper from aqueous copper ion by HGMS in combination with a chemical reduction process.
View Article and Find Full Text PDFA novel Bio-Entrapped Membrane Reactor (BEMR) packed with bio-ball carriers was constructed and investigated for organics removal and membrane fouling by soluble microbial products (SMP). An objective was to evaluate the stability of the filtration process in membrane bioreactors through backwashing and chemical cleaning. The novel BEMR was compared to a conventional membrane bioreactor (CMBR) on performance, with both treating identical wastewater from a food and beverage processing plant.
View Article and Find Full Text PDFIn the present study, the removal mechanisms of four antibiotics (sulfamethoxazole, sulfadimethoxine, sulfamethazine, and trimethoprim) and four non-steroidal anti-inflammatory drugs (acetaminophen, ibuprofen, ketoprofen, and naproxen) in immobilized cell process were investigated using batch reactors. This work principally explores the individual or collective roles of biodegradation and bio-sorption as removal routes of the target pharmaceuticals and the results were validated by various experimental and analytical tools. Biodegradation and bio-sorption were found as dominant mechanisms for the drug removal, while volatilization and hydrolysis were negligible for all target pharmaceuticals.
View Article and Find Full Text PDFThis study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study.
View Article and Find Full Text PDF