Publications by authors named "Cheng S Lee"

The high prevalence of chronic wounds is a growing concern. Recently, hypochlorous acid (HOCl)-based solutions were introduced as an alternative antimicrobial for wound cleansing. In this study, we assessed the in vitro bactericidal activities of seven commercially available wound irrigation products commonly found in South-East Asia.

View Article and Find Full Text PDF

Studies in vivo have demonstrated that the accumulation of D-amino acids (D-AAs) is associated with age-related diseases and increased immune activation. However, the underlying mechanism(s) of these observations are not well defined. The metabolism of D-AAs by D-amino oxidase (DAO) produces hydrogen peroxide (HO), a reactive oxygen species involved in several physiological processes including immune response, cell differentiation, and proliferation.

View Article and Find Full Text PDF

Background: d-Amino acids (d-AAs) have been associated with age-associated conditions in the general population but their relevance in people with HIV (PWH), who experience accentuated/accelerated aging has not been studied. We compared d-AA levels in HIV-infected and uninfected controls and explored their association with markers of immune activation, gut permeability and organ dysfunction.

Design: Case-control analysis.

View Article and Find Full Text PDF

It is now more than 20 years since the common chromosomal fragile site was characterised and the gene spanning this site was identified. In this time, much information has been discovered about its contribution to disease; however, the normal biological role of is not yet clear. Experiments leading to the identification of the gene are recounted, revealing enigmatic relationships between the fragile site, its gene and the encoded protein.

View Article and Find Full Text PDF

Background: Patients treated for human immunodeficiency virus (HIV) infection are prone to developing chronic kidney disease (CKD). Current methods used in assessing kidney function suffer inaccuracy in HIV-infected patients. This study aims to identify biomarkers that could complement existing methods of kidney assessment among HIV-infected subjects.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) hold vast potential for future electronic devices due to their outstanding properties, however covalent functionalization often destroys the intrinsic properties of SWCNTs, thus limiting their full potential. Here, we demonstrate the fabrication of a functionalized graphene/semiconducting SWCNT (T@fG) heterostructured thin film transistor as a chemical sensor. In this structural configuration, graphene acts as an atom-thick, impermeable layer that can be covalently functionalized facile diazonium chemistry to afford a high density of surface functional groups while protecting the underlying SWCNT network from chemical modification, even during a covalent chemical reaction.

View Article and Find Full Text PDF

A critical challenge to translating field effect transistors into biochemical sensor platforms is the requirement of a gate electrode, which imposes restrictions on sensor device architectures and results in added expense, poorer scalability, and electrical noise. Here we show that it is possible to eliminate the need of the physical gate electrode and dielectrics altogether using a synthetic tube-in-a-tube (Tube2) semiconductor. Composed of a semiconducting single-walled carbon nanotube nested in a charged, impermeable covalent functional shell, Tube2 allows the semiconducting conduction pathway to be modulated solely by surface functional groups in a chemically gated-all-around configuration.

View Article and Find Full Text PDF

Fragile site FRA16D exhibits DNA instability in cancer, resulting in diminished levels of protein from the WWOX gene that spans it. WWOX suppresses tumor growth by an undefined mechanism. WWOX participates in pathways involving aerobic metabolism and reactive oxygen species.

View Article and Find Full Text PDF

WWOX is a >1 Mb gene spanning FRA16D Common Chromosomal Fragile Site, a region of DNA instability in cancer. Consequently, altered WWOX levels have been observed in a wide variety of cancers. In vitro studies have identified a large number and variety of potential roles for WWOX.

View Article and Find Full Text PDF

The WWOX gene spans the common chromosomal fragile site FRA16D that is located within a massive (780 kb) intron. The WWOX gene is very long, at 1.1 Mb, which may contribute to the very low abundance of the full-length 1.

View Article and Find Full Text PDF

Covalently functionalized, semiconducting double-walled carbon nanotubes exhibit remarkable properties and can outperform their single-walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double-walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties.

View Article and Find Full Text PDF

A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel.

View Article and Find Full Text PDF

A novel sheathless capillary isotachophoresis (CITP/CZE)-mass spectrometry (MS) interface featuring a large inner diameter (i.d.) separation capillary, and a detachable small i.

View Article and Find Full Text PDF

Due to the inherent disadvantage of biomarker dilution in complex biological fluids such as serum/plasma, urine, and saliva, investigative studies directed at tissues obtained from the primary site of pathology probably afford the best opportunity for the discovery of disease biomarkers. Still, the large variation of protein relative abundances with clinical specimens often exceeds the dynamic range of currently available proteomic techniques. Furthermore, since the sizes of human tissue biopsies are becoming significantly smaller due to the advent of minimally invasive methods and early detection and treatment of lesions, a more effective discovery-based proteomic technology is critically needed to enable comprehensive and comparative studies of protein profiles that will have diagnostic and therapeutic relevance.

View Article and Find Full Text PDF

Atom-thick materials such as single-walled carbon nanotubes (SWCNTs) and graphene exhibit ultrahigh sensitivity to chemical perturbation partly because all of the constituent atoms are surface atoms. However, low selectivity due to nonspecific binding on the graphitic surface is a challenging issue to many applications including chemical sensing. Here, we demonstrated simultaneous attainment of high sensitivity and selectivity in thin-film field effect transistors (TFTs) based on outer-wall selectively functionalized double-walled carbon nanotubes (DWCNTs).

View Article and Find Full Text PDF

We demonstrate the direct coupling of transient capillary isotachophoresis/capillary zone electrophoresis (CITP/CZE) with a high-sensitivity triple quadrupole mass spectrometer operating in selected reaction monitoring (SRM) mode for sample quantitation. The capability of CITP/CZE for in situ sample enrichment and separation has been shown to significantly improve the analytical figures of merit. A linear dynamic range spanning 4 orders of magnitude was observed.

View Article and Find Full Text PDF

Object: Tumor-initiating cells are uniquely resilient to current treatment modalities and play an important role in tumor resistance and recurrence. The lack of specific tumor-initiating cell markers to identify and target these cells presents a major obstacle to effective directed therapy.

Methods: To identify tumor-initiating cell markers in primary brain tumors, the authors compared the proteomes of glioma tumor-initiating cells to their differentiated progeny using a novel, nongel/shotgun-based, multidimensional liquid-chromatography protein separation technique.

View Article and Find Full Text PDF

Besides proteome complexity, the greatest bioanalytical challenge facing comprehensive proteomic analysis, particularly in the identification of low abundance proteins, is related to the large variation of protein relative abundances. In contrast to universally enriching all analytes by a similar degree, the result of the capillary isotachophoresis (CITP) stacking process is that major components may be diluted, but trace compounds are concentrated. Such selective enhancement toward low abundance proteins drastically reduces the range of relative protein abundances within complex proteomes and greatly enhances the resulting proteome coverage.

View Article and Find Full Text PDF

Complicating proteomic analysis of whole tissues is the obvious problem of cell heterogeneity in tissues, which often results in misleading or confusing molecular findings. Thus, the coupling of tissue microdissection for tumor cell enrichment with capillary isotachophoresis-based selective analyte concentration not only serves as a synergistic strategy to characterize low abundance proteins, but it can also be employed to conduct comparative proteomic studies of human astrocytomas. A set of fresh frozen brain biopsies were selectively microdissected to provide an enriched, high quality, and reproducible sample of tumor cells.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most common and malignant primary brain tumor. Recent evidence indicates that a subset of glioblastoma tumor cells have a stem cell like phenotype that underlies chemotherapy resistance and tumor recurrence. We utilized a new "multidimensional" capillary isoelectric focusing nano-reversed-phase liquid chromatography platform with tandem mass spectrometry to compare the proteomes of isolated glioblastoma tumor stem cell and differentiated tumor cell populations.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes (T2D) candidate gene: potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) was suggested by conducting a genome wide association study (GWAS) in Japanese population. Association studies have been replicated among East Asian populations; however, the association between this gene and T2D in Southeast Asian populations still needs to be studied. This study aimed to investigate the association of KCNQ1 common variants with type 2 diabetes in Malaysian Malay subjects.

View Article and Find Full Text PDF

Cellular senescence acts as a potent barrier to tumorigenesis and contributes to the anti-tumor activity of certain chemotherapeutic agents. Senescent cells undergo a stable cell cycle arrest controlled by RB and p53 and, in addition, display a senescence-associated secretory phenotype (SASP) involving the production of factors that reinforce the senescence arrest, alter the microenvironment, and trigger immune surveillance of the senescent cells. Through a proteomics analysis of senescent chromatin, we identified the nuclear factor-κB (NF-κB) subunit p65 as a major transcription factor that accumulates on chromatin of senescent cells.

View Article and Find Full Text PDF

Background: Ovarian cancer is one of the most lethal types of female malignancy. Although most patients are initially responsive to platinum-based chemotherapy, almost all develop recurrent chemoresistant tumors and succumb to their diseases. Elucidating the pathogenesis underlying drug resistance is fundamental to the development of new therapeutics, leading to improved clinical outcomes in these patients.

View Article and Find Full Text PDF

A compelling need exists for the development of technologies that facilitate and accelerate the discovery of novel protein biomarkers with therapeutic and diagnostic potential. Comparisons among shotgun proteome technologies, including capillary isotachophoresis (CITP)-based multidimensional separations and multidimensional LC system, are therefore performed in this study regarding their abilities to address the challenges of protein complexity and relative abundance inherent in glioblastoma multiforme-derived cancer stem cells. Comparisons are conducted using a single processed protein digest with equal sample loading, identical second-dimension separation (RPLC) and MS conditions, and consistent search parameters and cutoff established by the target-decoy determined false-discovery rate.

View Article and Find Full Text PDF

A compelling need exists for the development of technologies that facilitate and accelerate the discovery of novel protein biomarkers with therapeutic and diagnostic potential. The inherent disadvantage of biomarker dilution in complex biological fluids such as serum/plasma, urine, and saliva necessitates highly sensitive analytical approaches, often exceeding the dynamic range of currently available proteomic platforms. Thus, investigative studies directed at tissues obtained from the primary site of pathology probably afford the best opportunity for the discovery of disease biomarkers.

View Article and Find Full Text PDF